• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N consegui realizar por teorema de tales!

N consegui realizar por teorema de tales!

Mensagempor bmachado » Ter Mar 27, 2012 09:55

Uma reta paralela ao lado BC de um triangulo ABC determina sobre o lado AB segmentos de 3cm e de 12cm. Calcule as medidas dos segmentos que essa reta determina sobre o lado AC, cuja medida e 10cm. Obrigado
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: N consegui realizar por teorema de tales!

Mensagempor LuizAquino » Ter Mar 27, 2012 14:50

bmachado escreveu:Uma reta paralela ao lado BC de um triangulo ABC determina sobre o lado AB segmentos de 3cm e de 12cm. Calcule as medidas dos segmentos que essa reta determina sobre o lado AC, cuja medida e 10cm.


A figura abaixo ilustra o exercício.

figura.png
figura.png (4.49 KiB) Exibido 5810 vezes


Com base nessa figura, por favor informe qual foi a sua dificuldade em aplicar o Teorema de Tales.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: N consegui realizar por teorema de tales!

Mensagempor bmachado » Ter Mar 27, 2012 16:10

LuizAquino escreveu:
bmachado escreveu:Uma reta paralela ao lado BC de um triangulo ABC determina sobre o lado AB segmentos de 3cm e de 12cm. Calcule as medidas dos segmentos que essa reta determina sobre o lado AC, cuja medida e 10cm.


A figura abaixo ilustra o exercício.

figura.png


Com base nessa figura, por favor informe qual foi a sua dificuldade em aplicar o Teorema de Tales.



Obrigado e pq n consegui visualizar o desenho dessa forma, entao, fiz errado, vlw
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: N consegui realizar por teorema de tales!

Mensagempor educosta » Ter Mar 27, 2012 16:26

Como o triângulo menor formado pela reta que passa pelo lado AB é um triângulo retângulo, pode-se calcular o cateto oposto ao ângulo de 30 graus utilizando o seno do ângulo, com este valor calculado, basta diminuir da medida de 10cm para se obter o valor dos segmentos formados sobre o lado AC.
educosta
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 27, 2012 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia Automação Industrial
Andamento: cursando

Re: N consegui realizar por teorema de tales!

Mensagempor bmachado » Ter Mar 27, 2012 17:24

bmachado escreveu:
bmachado escreveu:
educosta escreveu:Como o triângulo menor formado pela reta que passa pelo lado AB é um triângulo retângulo, pode-se calcular o cateto oposto ao ângulo de 30 graus utilizando o seno do ângulo, com este valor calculado, basta diminuir da medida de 10cm para se obter o valor dos segmentos formados sobre o lado AC.


Obrigado pela atencao, pois, sou graduado há anos na area de saude, e resolvi fazer outro curso q exige no vestibular da matematica, ta osso!Mas aproveitando estou c duvida na resoluca de uma questao q envolve tg, vc sabe sobre esse assunto, chegue a questao no link tem a resolucao, obrigado; Na figura, ACB é reto, ABD = DBC = ?,
AD = x, DC = 1 e BC = 3.Com as informações dadas, determine o valor
de x.

A pergunta eu postei ontem em:http://www.ajudamatematica.com/viewtopic.php?f=119&t=7666
Obrigado
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: N consegui realizar por teorema de tales!

Mensagempor LuizAquino » Ter Mar 27, 2012 17:46

educosta escreveu:Como o triângulo menor formado pela reta que passa pelo lado AB é um triângulo retângulo, pode-se calcular o cateto oposto ao ângulo de 30 graus utilizando o seno do ângulo, com este valor calculado, basta diminuir da medida de 10cm para se obter o valor dos segmentos formados sobre o lado AC.


Não há triângulo retângulo algum nessa figura.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}