• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral - onde errei?

Integral - onde errei?

Mensagempor dina ribeiro » Sex Mar 16, 2012 18:39

Boa tarde!

Gostaria de saber onde errei na resolução da integral abaixo:
\int_{}^{}s {e}^{-5s}ds
fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)

-\frac{1}{5}\int_{}^{}s{e}^{u}du
fazendo por partes \int_{}^{}k*dv= k*v - \int_{}^{}v*dk
onde k=s , dk=1
v=e^u , dv=e^u du

-\frac{1}{5}\int_{}^{}s{e}^{u}du = -\frac{1}{5}s{e}^{u}-{e}^{u}
=-\frac{1}{5}s{e}^{-5s}-{e}^{-5s}+c

grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - onde errei?

Mensagempor LuizAquino » Sex Mar 16, 2012 19:28

dina ribeiro escreveu:Gostaria de saber onde errei na resolução da integral abaixo:
\int_{}^{}s {e}^{-5s}ds
fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)

-\frac{1}{5}\int_{}^{}s{e}^{u}du


Você errou essa substituição. O correto seria:

\int s e^{-5s}\, ds = -\frac{1}{5}\int \left(-\frac{u}{5}\right) e^u \, du

Note que na sua resolução, a variável s continuou aparecendo na integral após a substituição. Isso não pode acontecer. Afinal de contas, você desejava substituir a variável da integral que era s por uma outra variável (no caso u).

Agora continue a resolução a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral - onde errei?

Mensagempor dina ribeiro » Sáb Mar 17, 2012 00:14

Mas u=-5s ou u=s ??????

Se fosse igual a s , ficaria assim: -\frac{1}{5}\int_{}^{}u{e}^{-5u}du

Não entendi!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - onde errei?

Mensagempor MarceloFantini » Sáb Mar 17, 2012 01:19

A substituição que ele fez é u=-5s.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral - onde errei?

Mensagempor dina ribeiro » Sáb Mar 17, 2012 11:37

simmmm, então pq ele disse que tenho que substituir o s por u, se u=-5s????

-\frac{1}{5}\int_{}^{}s{e}^{-5s}

Se u=-5s, então

-\frac{1}{5}\int_{}^{}s{e}^{u}

Onde está o erro????
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - onde errei?

Mensagempor MarceloFantini » Sáb Mar 17, 2012 13:02

Porque quando integramos queremos ter apenas a variável dentro da integral. Não faz sentido usar uma substituição e manter a variável original.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral - onde errei?

Mensagempor LuizAquino » Sáb Mar 17, 2012 22:41

dina ribeiro escreveu:Mas u=-5s ou u=s ??????

Se fosse igual a s , ficaria assim: -\frac{1}{5}\int_{}^{}u{e}^{-5u}du

Não entendi!


dina ribeiro escreveu:simmmm, então pq ele disse que tenho que substituir o s por u, se u=-5s????

-\frac{1}{5}\int_{}^{}s{e}^{-5s}

Se u=-5s, então

-\frac{1}{5}\int_{}^{}s{e}^{u}

Onde está o erro????


Você interpretou errado o que eu disse.

Eu não disse que você deveria fazer s = u.

O que eu disse foi: "Note que na sua resolução, a variável s continuou aparecendo na integral após a substituição. Isso não pode acontecer. Afinal de contas, você desejava substituir a variável da integral que era s por uma outra variável (no caso u)".

No método da substituição, nós devemos "substituir" ou "trocar" a variável original da integral por uma outra variável.

Vamos supor que a variável original da integral fosse s. Dizer que vamos "substituir" (ou "trocar") a variável original da integral por u, não significa dizer que vamos fazer s = u. Significa apenas que a integral passará da forma \int f(s) \,ds para a forma \int g(u) \,du .

Voltando ao exercício, a integral estava no formato:

\int s{e}^{-5s} \, ds

Nesse caso, podemos dizer que f(s) = se^{-5s} e que portanto a integral tem o formato:

\int f(s) \, ds

Desejamos agora fazer uma substituição (uma troca) de variável de modo que o novo formato será:

\int g(u) \, du

Fazendo então u = -5s (o que é o mesmo que dizer que s = -u/5), temos que a integral original será reescrita como:

\int -\frac{1}{5}\left(-\frac{u}{5}\right) e^u \, du

Nesse caso, temos que g(u) = -\frac{1}{5}\left(-\frac{u}{5}\right) e^u .

O seu erro está no fato de que após a sua substituição o integrando continuou dependendo da variável s. Isto é, não temos apenas uma função do tipo g(u).

Eis o que você escreveu:

dina ribeiro escreveu:-\frac{1}{5}\int s{e}^{u}du


Note que no integrando a variável s continuou aparecendo. Isso não pode acontecer quando usamos a técnica de substituição.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral - onde errei?

Mensagempor dina ribeiro » Dom Mar 18, 2012 15:15

Ahhhhh entendi... não tinha conseguido visualizar isso!

Obrigada!!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D