por Claudin » Qui Fev 09, 2012 18:57
Considerando a matriz
0 3 5
2 -5 4
1 2 1
Para encontrar a inversa, pelo modo que eu quero deve-se fazer o seguinte
Fazer a matriz aumentada com a identidade
e ir escalonando. Correto? Se for invertível a matriz inversa após o escalonamento se formará na direita e na esquerda seria a Identidade.
Porém pelo método de Gauss Jordan, como iniciarei o escalonamento sendo que a¹¹ = 0 ?
Não tem como passar ele para 1, para que comece o escalonamento.
E ai oq eu faço?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qui Fev 09, 2012 20:12
Se você somar a terceira linha a menos a primeira você terá

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Sex Fev 10, 2012 10:36
Cheguei em um resultado muito estranho, está errado, vou refazer, se alguém postar o início do desenvolvimento já ajuda.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sex Fev 10, 2012 11:29
Claudin escreveu:Considerando a matriz
0 3 5
2 -5 4
1 2 1
Para encontrar a inversa, pelo modo que eu quero deve-se fazer o seguinte
Fazer a matriz aumentada com a identidade
e ir escalonando. Correto? Se for invertível a matriz inversa após o escalonamento se formará na direita e na esquerda seria a Identidade.
Porém pelo método de Gauss Jordan, como iniciarei o escalonamento sendo que a¹¹ = 0 ?
Não tem como passar ele para 1, para que comece o escalonamento.
E ai oq eu faço?
Claudin escreveu:Cheguei em um resultado muito estranho, está errado, vou refazer, se alguém postar o início do desenvolvimento já ajuda.
Comece fazendo a operação

:
![\left[\begin{array}{ccc|ccc}
0 & 3 & 5 & 1 & 0 & 0 \\
2 & -5 & 4 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \sim \left[\begin{array}{ccc|ccc}
1 & 5 & 6 & 1 & 0 & 1 \\
2 & -5 & 4 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \left[\begin{array}{ccc|ccc}
0 & 3 & 5 & 1 & 0 & 0 \\
2 & -5 & 4 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \sim \left[\begin{array}{ccc|ccc}
1 & 5 & 6 & 1 & 0 & 1 \\
2 & -5 & 4 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 & 1
\end{array}\right]](/latexrender/pictures/10ad4caffa4ade108485e7c9f4a66be8.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Sex Fev 10, 2012 19:33
A inversa seria?
5 4 35
-2 -3 -14
1 2 6
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sex Fev 10, 2012 21:25
Tente multiplicar pela matriz original e veja se o resultado é a identidade.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Fev 11, 2012 02:41
Claudin escreveu:A inversa seria?
5 4 35
-2 -3 -14
1 2 6
Como você já deve saber (e bem lembrou o colega
MarceloFantini), ao multiplicar essa matriz pela original o resultado deve ser a identidade, caso essa matriz seja de fato a inversa da original.
Após fazer essa multiplicação, você perceberá que não é o caso.
A inversa correta é:
ObservaçãoÉ interessante que você comece a usar um
sistema computacional algébrico. Um sistema como esse será muito útil em seus estudos. Particularmente, eu recomendo o
SAGE.
Vale também ressaltar que você pode calcular a inversa de uma matriz usando o sistema online
WolframAlpha. Basta executar no campo de entrada do sistema o comando:
- Código: Selecionar todos
{{0, 3, 5}, {2, -5, 4}, {1, 2, 1}}^(-1)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Seg Fev 13, 2012 11:30
Já conheço o programa sim.
Mas na hora da prova eu não terei esse programa, por isso gostaria de ver o desenvolvimento
para ajudar a entender.
Foi o que eu sempre tentei mostrar isso aqui no Fórum.
Continuo sem compreender como resolver
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Seg Fev 13, 2012 13:55
Não intendi esse termo que multiplica a sua inversa no caso acima?
Achei alguns erros e fiz novamente,
O que eu encontrei foi o seguinte:
![\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{67}{3} & \frac{56}{3} & -9 \\
0 & 1 & 0 & \frac{34}{3} & \frac{11}{3} & \frac{-20}{3} \\
0 & 0 & 1 & 3 & 1 & -2
\end{array}\right] \sim \left \left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{67}{3} & \frac{56}{3} & -9 \\
0 & 1 & 0 & \frac{34}{3} & \frac{11}{3} & \frac{-20}{3} \\
0 & 0 & 1 & 3 & 1 & -2
\end{array}\right] \sim \left](/latexrender/pictures/a8f7ef10416b77057eb890f47cd3c40b.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Seg Fev 13, 2012 14:43
Claudin escreveu:Já conheço o programa sim.
Ok.
Claudin escreveu:Mas na hora da prova eu não terei esse programa (...)
Isso é verdade. Mas enquanto você estiver estudando, pode utilizar o programa para conferir a sua resposta.
Em uma de suas mensagens, você perguntou:
Claudin escreveu:A inversa seria?
5 4 35
-2 -3 -14
1 2 6
Note que você poderia utilizar o programa para conferir isso. Ou ainda, você mesmo poderia conferir manualmente a sua resposta fazendo a seguinte multiplicação:

Se essa multiplicação resultar na matriz identidade, então a inversa foi calculada corretamente. Caso contrário, algum erro foi cometido.
Vale lembrar que na hora da prova você também não terá a sua disposição esse fórum para pedir ajuda. É recomendado que você aprenda a conferir a sua resposta manualmente.
Claudin escreveu:(...) por isso gostaria de ver o desenvolvimento para ajudar a entender.
Foi o que eu sempre tentei mostrar isso aqui no Fórum.
Continuo sem compreender como resolver
Na sua primeira mensagem, você perguntou:
Claudin escreveu:Porém pelo método de Gauss Jordan, como iniciarei o escalonamento sendo que a¹¹ = 0 ?
Não tem como passar ele para 1, para que comece o escalonamento.
E ai oq eu faço?
Em seguida, você comentou:
Claudin escreveu:Cheguei em um resultado muito estranho, está errado, vou refazer, se alguém postar o início do desenvolvimento já ajuda.
Depois disso, eu mostrei para você o início assim como você pediu:
Comece fazendo a operação

:
![\left[\begin{array}{ccc|ccc} 0 & 3 & 5 & 1 & 0 & 0 \\ 2 & -5 & 4 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{array}\right] \sim \left[\begin{array}{ccc|ccc} 1 & 5 & 6 & 1 & 0 & 1 \\ 2 & -5 & 4 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc|ccc} 0 & 3 & 5 & 1 & 0 & 0 \\ 2 & -5 & 4 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{array}\right] \sim \left[\begin{array}{ccc|ccc} 1 & 5 & 6 & 1 & 0 & 1 \\ 2 & -5 & 4 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{array}\right]](/latexrender/pictures/0300efe2f869d7ff98c3bd10e5f5c0e9.png)
Entretanto, você ainda continua com dúvidas. Eu vou então continuar os passos.
2º Passo)

3º Passo)
4º Passo)
5º Passo)
6º Passo)

7º Passo)
![\left[\begin{array}{ccc|ccc} 1 & 5 & 0 & -\frac{1}{17} & -\frac{6}{17} & \frac{29}{17} \\ 0 & 1 & 0 & \frac{2}{51} & -\frac{5}{51} & \frac{10}{51} \\ 0 & 0 & 1 & \frac{3}{17} & \frac{1}{17} & -\frac{2}{17}\end{array}\right] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & -\frac{13}{51} & \frac{7}{51} & \frac{37}{51} \\ 0 & 1 & 0 & \frac{2}{51} & -\frac{5}{51} & \frac{10}{51} \\ 0 & 0 & 1 & \frac{3}{17} & \frac{1}{17} & -\frac{2}{17}\end{array}\right] \left[\begin{array}{ccc|ccc} 1 & 5 & 0 & -\frac{1}{17} & -\frac{6}{17} & \frac{29}{17} \\ 0 & 1 & 0 & \frac{2}{51} & -\frac{5}{51} & \frac{10}{51} \\ 0 & 0 & 1 & \frac{3}{17} & \frac{1}{17} & -\frac{2}{17}\end{array}\right] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & -\frac{13}{51} & \frac{7}{51} & \frac{37}{51} \\ 0 & 1 & 0 & \frac{2}{51} & -\frac{5}{51} & \frac{10}{51} \\ 0 & 0 & 1 & \frac{3}{17} & \frac{1}{17} & -\frac{2}{17}\end{array}\right]](/latexrender/pictures/95113ef6e8f4c96b29789121f4cc76a3.png)
Podemos então reescrever a resposta final como:

Para conferir o resultado, basta efetuar a operação:

Note que o resultado dessa operação será a matriz identidade.
ObservaçãoSe você deixasse para transformar os pivôs em 1 apenas no final do processo (como expliquei em
seu outro tópico), você iria economizar tempo realizando menos operações com frações.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Seg Fev 13, 2012 15:33
Muito obrigado pela explicação Luiz Aquino
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6946 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3413 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6605 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
-
- [Matriz] Matriz com potencias
por rochadapesada » Dom Abr 07, 2013 20:29
- 3 Respostas
- 4544 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:32
Matrizes e Determinantes
-
- matriz
por Barbara » Ter Ago 18, 2009 15:26
- 4 Respostas
- 4686 Exibições
- Última mensagem por Molina

Qui Ago 20, 2009 18:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.