• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cilindro (MAUÁ - SP)

Cilindro (MAUÁ - SP)

Mensagempor Ananda » Seg Fev 25, 2008 18:24

Olá!
Bom o exercício é o seguinte:
Um cilindro circular reto, de raio R e altura h = 2R, é cortado por um plano paralelo ao seu eixo. Sendo R/2 a distância do eixo ao plano secante, calcule o volume do menor segmento cilíndrico resultante desta secção.
Resposta: \frac{R^3(4\pi-3\sqrt[]{3)}}{6}

Bom, eu entendi que é um cilindro circular reto eqüilátero, já que a altura é o dobro do raio. E para mim, o menor segmento cilíndrico é a figura sobre o plano. E como volume é área da base multiplicada pela altura, entendi que a área da base seria a área desse segmento cilíndrico (que não consegui calcular) multiplicada pela altura do cilindro, que no caso é 2R.
Para mim, a altura do segmento cilíndrico é R/2, mas não consegui achar o raio. Pela resposta, acredito que é preciso usar trigonometria. Mas não consegui associá-los.
Espero tua resposta.
Grata desde já pela atenção.
Anexos
cilindro.JPG
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Cilindro (MAUÁ - SP)

Mensagempor admin » Ter Fev 26, 2008 00:19

Olá Ananda!

Acho importante começarmos discutindo um plano para resolução que servirá como referência para outros problemas.
Pede-se para calcular o volume do segmento cilíndrico que é reto.
Aqui, o termo "reto" nos diz que o ângulo entre a base circular e a prolongação do cilindro é de 90^\circ.

Pois bem, a chave para a resolução é partir dos conceitos mais elementares.
Não queira resolver o exercício diretamente.
Inicie o raciocício pelo que se pede e em seguida, tente construir os passos anteriores que levam até lá.


Vamos nomear alguns pontos no círculo base para facilitar a identificação.
Veja:
circulo.jpg
circulo.jpg (10.86 KiB) Exibido 9577 vezes



Considerando o conceito elementar de volume do segmento de interesse, o que precisamos?
Como é reto, apenas precisamos da área da base deste sólido superior, pois o comprimento já temos.
Depois então, calculamos o volume com o produto área da base pelo comprimento que é 2R.

Identificando esta base:
Veja que a base deste sólido é ABC, precisamos calcular esta área.
Considere que você tem um sub-problema agora.

Como calcular esta área ABC?
A idéia é calcular áreas de regiões mais simples e obter esta por diferença.
Por exemplo, é fácil calcular a área do região OABC.
Após, repare que se subtraírmos a área do triângulo OAC, obteremos a área da região que queremos ABC. Vamos fazer assim!


Antes, precisamos daquele ângulo \alpha.
E para obtê-lo, vamos calcular c, por Pitágoras.

R^2 = \left( \frac{R}{2} \right) ^2 + c^2

R^2 - \frac{R^2}{4} = c^2

c^2 = \frac{3R^2}{4}

c = \frac{ \sqrt{3}}{2}R

E para \alpha, utilizaremos seno:

sen\alpha = \frac{c}{R} = \frac{\sqrt{3}}{2}

\alpha = 60^\circ




Agora, vamos voltar para nosso plano.
Calculando a área da região OABC:

Podemos fazer uma regra de três.
\left\{
\begin{matrix}
   360^\circ & \pi R^2 \\ 
   120^\circ & A_{OABC}
\end{matrix}
\right.

A_{OABC} = \frac{120^\circ \cdot \pi R^2}{360^\circ}

A_{OABC} = \frac{\pi R^2}{3}


Pronto, mais um passo.
Na seqüência, a área do triângulo OAC:

A_{OAC} = \frac{R}{2} \cdot c = \frac{R}{2} \cdot \frac{\sqrt{3}}{2}R = \frac{R^2\sqrt{3}}{4}


Agora que já temos as áreas intermediárias que precisávamos, vamos enfim obter a área da região ABC:
A_{ABC} = A_{OABC} - A_{OAC}

A_{ABC} = \frac{\pi R^2}{3} - \frac{R^2 \sqrt{3}}{4}

A_{ABC} = R^2 \left( \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right)


E finalmente, o volume que precisamos:

V = A_{ABC} \cdot 2R

V = R^2 \left( \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right) \cdot 2R

V = 2R^3 \left( \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right)

V = R^3 \left( \frac{2\pi}{3} - \frac{\cancel{2}\sqrt{3}}{\cancel{4}{2}} \right)

V = R^3 \left( \frac{4\pi - 3\sqrt{3}}{6} \right)


Ananda, resumindo, não se preocupe em querer resolver os problemas de uma só vez, ou, se não conseguir construir imediatamente um caminho para a resolução.
Lembre-se: comece procurando "algo" que falta para se obter a resposta. Em seguida, perceberá que para antes conseguir este "algo", precisará calcular um "algo2" etc. Assim, você construirá os passos que levarão à resolução final.

Espero ter ajudado!
Bons estudos.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Cilindro (MAUÁ - SP)

Mensagempor Ananda » Ter Fev 26, 2008 12:42

Olá!
Ajudaste sim!
Grata pelas dicas!
Até mais!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D