por Ananda » Seg Fev 25, 2008 18:24
Olá!
Bom o exercício é o seguinte:
Um cilindro circular reto, de raio R e altura h = 2R, é cortado por um plano paralelo ao seu eixo. Sendo R/2 a distância do eixo ao plano secante, calcule o volume do menor segmento cilíndrico resultante desta secção.
Resposta: ![\frac{R^3(4\pi-3\sqrt[]{3)}}{6} \frac{R^3(4\pi-3\sqrt[]{3)}}{6}](/latexrender/pictures/0f48e93063706f1725e85f3af9cbc788.png)
Bom, eu entendi que é um cilindro circular reto eqüilátero, já que a altura é o dobro do raio. E para mim, o menor segmento cilíndrico é a figura sobre o plano. E como volume é área da base multiplicada pela altura, entendi que a área da base seria a área desse segmento cilíndrico (que não consegui calcular) multiplicada pela altura do cilindro, que no caso é 2R.
Para mim, a altura do segmento cilíndrico é R/2, mas não consegui achar o raio. Pela resposta, acredito que é preciso usar trigonometria. Mas não consegui associá-los.
Espero tua resposta.
Grata desde já pela atenção.
- Anexos
-

Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Fev 26, 2008 00:19
Olá
Ananda!
Acho importante começarmos discutindo um plano para resolução que servirá como referência para outros problemas.
Pede-se para calcular o volume do segmento cilíndrico que é reto.
Aqui, o termo "reto" nos diz que o ângulo entre a base circular e a prolongação do cilindro é de

.
Pois bem, a chave para a resolução é partir dos conceitos mais elementares.
Não queira resolver o exercício diretamente.
Inicie o raciocício pelo que se pede e em seguida, tente construir os passos anteriores que levam até lá.
Vamos nomear alguns pontos no círculo base para facilitar a identificação.
Veja:

- circulo.jpg (10.86 KiB) Exibido 9785 vezes
Considerando o conceito elementar de volume do segmento de interesse, o que precisamos?
Como é reto, apenas precisamos da área da base deste sólido superior, pois o comprimento já temos.
Depois então, calculamos o volume com o produto área da base pelo comprimento que é

.
Identificando esta base:
Veja que a base deste sólido é

, precisamos calcular esta área.
Considere que você tem um sub-problema agora.
Como calcular esta área

?
A idéia é calcular áreas de regiões mais simples e obter esta por diferença.
Por exemplo, é fácil calcular a área do região

.
Após, repare que se subtraírmos a área do triângulo

, obteremos a área da região que queremos

. Vamos fazer assim!
Antes, precisamos daquele ângulo

.
E para obtê-lo, vamos calcular

, por Pitágoras.




E para

, utilizaremos seno:


Agora, vamos voltar para nosso plano.
Calculando a área da região

:
Podemos fazer uma regra de três.



Pronto, mais um passo.
Na seqüência, a área do triângulo

:

Agora que já temos as áreas intermediárias que precisávamos, vamos enfim obter a área da região

:



E finalmente, o volume que precisamos:




Ananda, resumindo, não se preocupe em querer resolver os problemas de uma só vez, ou, se não conseguir construir imediatamente um caminho para a resolução.
Lembre-se: comece procurando "algo" que falta para se obter a resposta. Em seguida, perceberá que para antes conseguir este "algo", precisará calcular um "algo2" etc. Assim, você construirá os passos que levarão à resolução final.
Espero ter ajudado!
Bons estudos.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Ter Fev 26, 2008 12:42
Olá!
Ajudaste sim!
Grata pelas dicas!
Até mais!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cilindro
por aprendiz » Dom Nov 09, 2008 23:10
- 0 Respostas
- 1246 Exibições
- Última mensagem por aprendiz

Dom Nov 09, 2008 23:10
Geometria Analítica
-
- Cilindro
por geriane » Qui Abr 22, 2010 16:21
- 1 Respostas
- 3334 Exibições
- Última mensagem por MarceloFantini

Qui Abr 22, 2010 17:35
Geometria Espacial
-
- Cilindro.
por nandokmx » Qua Jun 02, 2010 11:40
- 3 Respostas
- 2182 Exibições
- Última mensagem por MarceloFantini

Qui Jun 03, 2010 03:43
Geometria Espacial
-
- Cilindro
por renataf » Qua Dez 01, 2010 20:27
- 2 Respostas
- 6157 Exibições
- Última mensagem por renataf

Qui Dez 02, 2010 17:46
Geometria Espacial
-
- cilindro
por scoth » Sex Jul 20, 2012 20:07
- 3 Respostas
- 3419 Exibições
- Última mensagem por fraol

Dom Jul 22, 2012 21:18
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.