• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Andreza » Seg Jan 02, 2012 11:40

No conjunto dos números reais a inequação \frac{x+b}{a-x} \geq 0 tem por conjunto-solução { x \in R / -3 \leq x < 4 }. Quais são os valores de a e b ?

Nesta inequação eu tenho q montar um sistema substituindo os valores, ou há uma maneira diferente de resolver?

Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Inequação

Mensagempor fraol » Seg Jan 02, 2012 17:49

Olá Andreza,

Uma inequação quociente, você sabe, será positiva quando ambos numerador e denominador tiverem o mesmo sinal ou nula quando o numerador for nulo.
Observe que há uma restrição para o denominador, qual é?

Assim você poderia tratar dois sistemas, um para o numerador e denominador positivos, outro para o caso deles serem negativos e uma última situação para o caso do numerador ser nulo. Depois disso avaliar os resultados encontrados para validar o conjunto solução.

A bem da verdade como são duas retas representadas pelas duas equações há infinitas possibilidades para o conjunto solução dependendo da atribuição de valores a a e b.

Ok?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Inequação

Mensagempor MarceloFantini » Seg Jan 02, 2012 17:55

Fraol, ele dá o conjunto solução e quer saber quais o valores de a e b que satisfazem isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação

Mensagempor fraol » Seg Jan 02, 2012 19:02

Conjunto solução dado: { x \in R | -3 \le x < 4 }.

Desenvolvendo os casos que citei:

(i) Caso positivo:
x + b > 0 \iff x > -b
a - x > 0 \iff -x > -a \iff x < a
Assim: -b < x < a

(j) Caso negativo:
x + b < 0 \iff x < -b
a - x < 0 \iff -x < -a \iff x > a
Assim: a < x < -b

(k) Caso nulo:
x + b = 0 \iff x = -b.

Basta juntar (i) e (k) para visualizarmos a e b dados no conjunto solução.

Em outras palavras foi isso que eu quiz dizer.

ps: Favor trocar "visualizarmos" por visualisarmos" na penúltima linha acima.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Inequação

Mensagempor Andreza » Ter Jan 03, 2012 10:58

Muito obrigada pela intenção mas eu ainda nao consegui resolver este exercício.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Inequação

Mensagempor fraol » Ter Jan 03, 2012 11:08

Oi Andreza,

Veja se você concorda com a minha conclusão:

Juntando (i) e (k) da minha intervenção anterior:

(i) -b < x < a
(k) x = -b

Vem que -b \le x < a, comparando com o conjunto solução dado, concluímos que b = 3 e a = 4.

Comentário: O caso (j) não casa com o conjunto solução dado pois ficaria assim a < x \le -b.

O que você me diz?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: