por Andreza » Seg Jan 02, 2012 11:40
No conjunto dos números reais a inequação

0 tem por conjunto-solução { x

R / -3

x < 4 }. Quais são os valores de a e b ?
Nesta inequação eu tenho q montar um sistema substituindo os valores, ou há uma maneira diferente de resolver?
Desde já agradeço.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por fraol » Seg Jan 02, 2012 17:49
Olá Andreza,
Uma inequação quociente, você sabe, será positiva quando ambos numerador e denominador tiverem o mesmo sinal ou nula quando o numerador for nulo.
Observe que há uma restrição para o denominador, qual é?
Assim você poderia tratar dois sistemas, um para o numerador e denominador positivos, outro para o caso deles serem negativos e uma última situação para o caso do numerador ser nulo. Depois disso avaliar os resultados encontrados para validar o conjunto solução.
A bem da verdade como são duas retas representadas pelas duas equações há infinitas possibilidades para o conjunto solução dependendo da atribuição de valores a a e b.
Ok?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MarceloFantini » Seg Jan 02, 2012 17:55
Fraol, ele dá o conjunto solução e quer saber quais o valores de a e b que satisfazem isso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fraol » Seg Jan 02, 2012 19:02
Conjunto solução dado: {

}.
Desenvolvendo os casos que citei:
(i) Caso positivo:


Assim:

(j) Caso negativo:


Assim:

(k) Caso nulo:

.
Basta juntar (i) e (k) para visualizarmos

e

dados no conjunto solução.
Em outras palavras foi isso que eu quiz dizer.
ps: Favor trocar "visualizarmos" por visualisarmos" na penúltima linha acima.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Andreza » Ter Jan 03, 2012 10:58
Muito obrigada pela intenção mas eu ainda nao consegui resolver este exercício.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por fraol » Ter Jan 03, 2012 11:08
Oi Andreza,
Veja se você concorda com a minha conclusão:
Juntando (i) e (k) da minha intervenção anterior:
(i)

(k)
Vem que

, comparando com o conjunto solução dado, concluímos que

e

.
Comentário: O caso (j) não casa com o conjunto solução dado pois ficaria assim

.
O que você me diz?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INEQUAÇÂO] Inequação do tipo: (a+ x < b + x < c + x)
por Diofanto » Dom Fev 03, 2013 19:55
- 7 Respostas
- 6081 Exibições
- Última mensagem por Diofanto

Qui Fev 14, 2013 23:45
Inequações
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7231 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- Inequação
por Luna » Seg Set 28, 2009 18:55
- 4 Respostas
- 3581 Exibições
- Última mensagem por Molina

Ter Set 29, 2009 16:50
Sistemas de Equações
-
- Inequação
por Luna » Ter Set 29, 2009 16:48
- 1 Respostas
- 2035 Exibições
- Última mensagem por Molina

Qua Set 30, 2009 00:39
Sistemas de Equações
-
- Inequação
por Bebel » Dom Ago 08, 2010 00:50
- 0 Respostas
- 1563 Exibições
- Última mensagem por Bebel

Dom Ago 08, 2010 00:50
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.