• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Andreza » Seg Jan 02, 2012 11:40

No conjunto dos números reais a inequação \frac{x+b}{a-x} \geq 0 tem por conjunto-solução { x \in R / -3 \leq x < 4 }. Quais são os valores de a e b ?

Nesta inequação eu tenho q montar um sistema substituindo os valores, ou há uma maneira diferente de resolver?

Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Inequação

Mensagempor fraol » Seg Jan 02, 2012 17:49

Olá Andreza,

Uma inequação quociente, você sabe, será positiva quando ambos numerador e denominador tiverem o mesmo sinal ou nula quando o numerador for nulo.
Observe que há uma restrição para o denominador, qual é?

Assim você poderia tratar dois sistemas, um para o numerador e denominador positivos, outro para o caso deles serem negativos e uma última situação para o caso do numerador ser nulo. Depois disso avaliar os resultados encontrados para validar o conjunto solução.

A bem da verdade como são duas retas representadas pelas duas equações há infinitas possibilidades para o conjunto solução dependendo da atribuição de valores a a e b.

Ok?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Inequação

Mensagempor MarceloFantini » Seg Jan 02, 2012 17:55

Fraol, ele dá o conjunto solução e quer saber quais o valores de a e b que satisfazem isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação

Mensagempor fraol » Seg Jan 02, 2012 19:02

Conjunto solução dado: { x \in R | -3 \le x < 4 }.

Desenvolvendo os casos que citei:

(i) Caso positivo:
x + b > 0 \iff x > -b
a - x > 0 \iff -x > -a \iff x < a
Assim: -b < x < a

(j) Caso negativo:
x + b < 0 \iff x < -b
a - x < 0 \iff -x < -a \iff x > a
Assim: a < x < -b

(k) Caso nulo:
x + b = 0 \iff x = -b.

Basta juntar (i) e (k) para visualizarmos a e b dados no conjunto solução.

Em outras palavras foi isso que eu quiz dizer.

ps: Favor trocar "visualizarmos" por visualisarmos" na penúltima linha acima.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Inequação

Mensagempor Andreza » Ter Jan 03, 2012 10:58

Muito obrigada pela intenção mas eu ainda nao consegui resolver este exercício.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Inequação

Mensagempor fraol » Ter Jan 03, 2012 11:08

Oi Andreza,

Veja se você concorda com a minha conclusão:

Juntando (i) e (k) da minha intervenção anterior:

(i) -b < x < a
(k) x = -b

Vem que -b \le x < a, comparando com o conjunto solução dado, concluímos que b = 3 e a = 4.

Comentário: O caso (j) não casa com o conjunto solução dado pois ficaria assim a < x \le -b.

O que você me diz?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}