• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação.

Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 19:16

Por favor, gostaria de saber se eu resolvi de forma correta. Não bateu com a resposta do gabarito, mas como várias outras respostas do gabarito estavam erradas, não sei se é o gabarito que está errado ou sou eu.
[{2}^{9}:({2}^{2}.{2}{)}^{3}{]}^{-3}= [{2}^{9}:({2}^{3}{)}^{3}{]}^{-3}=
[{2}^{9}:{2}^{9}{]}^{-3}= {1}^{-3}=\frac{1}{{1}^{3}}=1
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 20:43, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 19:50

Quando vc faz 1 elevado a -3 vc usa a regra
a elevado a menos n é igual a um sobre a elevado a n.
todo número elevado a 0 é igual a 1 portanto, 1 elevado a menos 3 é um sobre um elevado a 3 e o resultado de 1 a terceira é 1. Acredito q seja isso.
De uma conferida.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Andreza » Qui Nov 24, 2011 20:10

http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Potenciação.

Mensagempor Marcos1978 » Qui Nov 24, 2011 20:51

Andreza escreveu:http://pt.wikipedia.org/wiki/Exponencia%C3%A7%C3%A3o

De uma olhada neste link q potência é um assunto complexo demais . Até eu fiquei na dúvida e fui pesquisar.

Potências de 1As potências de 1 são as potências de base 1, dados por 1n, sendo n pertencente aos reais. Não importa o valor de "n", 1n será sempre 1. Não se pode afirmar que 0 elevado a 0 é igual a 1.

Acho que a minha resposta estava errada. Eu editei a questão e coloquei a resposta certa. Certa se o restante da questão estiver resolvido corretamente
Editado pela última vez por Marcos1978 em Qui Nov 24, 2011 22:38, em um total de 1 vez.
Marcos1978
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Nov 23, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação.

Mensagempor MarceloFantini » Qui Nov 24, 2011 21:51

Está certo, dá 1 pelo o que você fez, que acredito que seja isso: \left[ \frac{2^9}{(2^2 \cdot 2)^3} \right]^{-3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}