• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor Andreza » Seg Nov 14, 2011 14:43

Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um dépósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?

Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20
Calculei na fórmula a25= 140,00

Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )

No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado. Desde já agradeço muitissimo!!!!
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Progressão Aritmética

Mensagempor LuizAquino » Sex Nov 18, 2011 10:34

Andreza escreveu:Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um depósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?


Andreza escreveu:Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20

Ok

Andreza escreveu:Calculei na fórmula a25= 140,00

Note que a1 representa quando a criança nasceu. Portanto a2 representa o 1° aniversário, a3 representa o 2° aniversário, a4 representa o 3° aniversário e assim por diante. Sendo assim, o 25° aniversário deve ser o termo a26.


Andreza escreveu:Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )


Você deve calcular a soma dos 26 termos. Isto é, calcule:

S_{26} = \frac{(a_1 + a_{26})\cdot 26}{2}

Andreza escreveu:No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado.


O gabrito está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Aritmética

Mensagempor Andreza » Sáb Nov 19, 2011 12:10

Muito obrigada, eu não raciocinei o princípio do exercício. Tenho q prestar mais atenção. Aliás o concurso é mais pegadinha q aprendizado mesmo.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.