• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] raiz

[LIMITE] raiz

Mensagempor beel » Ter Set 06, 2011 13:48

\lim_{x\rightarrow - \infty}(\sqrt[3]{x^7}+ x)/\sqrt[3]{x^2}- 1

socorro? kkkk

Tentei transformar as raizes em potencias e resolver pela regra do polonimio, mas nao deu certo... o que devo fazer?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] raiz

Mensagempor Neperiano » Ter Set 06, 2011 14:44

Ola

Raiz de infinto é infinito, e infinito mais infinito é infinito.

Tente agora

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] raiz

Mensagempor beel » Ter Set 06, 2011 15:37

Meu resultado deu 1...é isso mesmo?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] raiz

Mensagempor beel » Ter Set 06, 2011 15:40

Eu dividi numerador e denominador por \sqrt[]{x^7}...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] raiz

Mensagempor MarceloFantini » Ter Set 06, 2011 18:18

Coloque as maiores potências em evidência tanto no numerador quanto no denominador, veja:

\lim_{x \to - \infty} \frac{\sqrt[3]{x^7} + x}{\sqrt[3]{x^2} +1} = \lim_{x \to - \infty} \frac{\sqrt[3]{x^7}}{\sqrt[3]{x^2}} \cdot \frac{(1 +  x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})} = \lim_{x \to - \infty} \sqrt[3]{x^5} \cdot \frac{(1 +  x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})}

Tente terminar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE] raiz

Mensagempor beel » Sex Set 09, 2011 16:52

quando coloca as raizes em evidencia, nao seria
\lim_{x\rightarrow - \infty\frac{\sqrt[3]{x^7} ( 1 - x^\frac{4}{3})}{ \sqrt[3]{x^2}(1 - x^\frac{1}{3})} ??


Com esse metodo, meu resultado deu - infinito...dividindo numerador e denominador por \sqrt[3]{x^7} ( raiz do maior coeficiente) deu 1...
Algum resultado tá certo?kk

Resumindo, quando eu tenho limite com raiz eu faço o que?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.