por beel » Ter Set 06, 2011 13:48
![\lim_{x\rightarrow - \infty}(\sqrt[3]{x^7}+ x)/\sqrt[3]{x^2}- 1 \lim_{x\rightarrow - \infty}(\sqrt[3]{x^7}+ x)/\sqrt[3]{x^2}- 1](/latexrender/pictures/8c36bbe16b753894dec8c05751247414.png)
socorro? kkkk
Tentei transformar as raizes em potencias e resolver pela regra do polonimio, mas nao deu certo... o que devo fazer?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Neperiano » Ter Set 06, 2011 14:44
Ola
Raiz de infinto é infinito, e infinito mais infinito é infinito.
Tente agora
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por beel » Ter Set 06, 2011 15:37
Meu resultado deu 1...é isso mesmo?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por beel » Ter Set 06, 2011 15:40
Eu dividi numerador e denominador por
![\sqrt[]{x^7} \sqrt[]{x^7}](/latexrender/pictures/b08fd7295a76ca14a97245210e7e6c37.png)
...
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Ter Set 06, 2011 18:18
Coloque as maiores potências em evidência tanto no numerador quanto no denominador, veja:
![\lim_{x \to - \infty} \frac{\sqrt[3]{x^7} + x}{\sqrt[3]{x^2} +1} = \lim_{x \to - \infty} \frac{\sqrt[3]{x^7}}{\sqrt[3]{x^2}} \cdot \frac{(1 + x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})} = \lim_{x \to - \infty} \sqrt[3]{x^5} \cdot \frac{(1 + x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})} \lim_{x \to - \infty} \frac{\sqrt[3]{x^7} + x}{\sqrt[3]{x^2} +1} = \lim_{x \to - \infty} \frac{\sqrt[3]{x^7}}{\sqrt[3]{x^2}} \cdot \frac{(1 + x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})} = \lim_{x \to - \infty} \sqrt[3]{x^5} \cdot \frac{(1 + x^{\frac{-4}{7}})}{(1 + x^{\frac{-2}{3}})}](/latexrender/pictures/d81be51a615fdfeec6b7e4ff225bd7c7.png)
Tente terminar.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por beel » Sex Set 09, 2011 16:52
quando coloca as raizes em evidencia, nao seria
![\lim_{x\rightarrow - \infty\frac{\sqrt[3]{x^7} ( 1 - x^\frac{4}{3})}{ \sqrt[3]{x^2}(1 - x^\frac{1}{3})} \lim_{x\rightarrow - \infty\frac{\sqrt[3]{x^7} ( 1 - x^\frac{4}{3})}{ \sqrt[3]{x^2}(1 - x^\frac{1}{3})}](/latexrender/pictures/eca3683889879a584e2ad9ea195fd635.png)
??
Com esse metodo, meu resultado deu - infinito...dividindo numerador e denominador por
![\sqrt[3]{x^7} \sqrt[3]{x^7}](/latexrender/pictures/2bf748173798842890d451da0ec5f7bd.png)
( raiz do maior coeficiente) deu 1...
Algum resultado tá certo?kk
Resumindo, quando eu tenho limite com raiz eu faço o que?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite - como resolver um lim quando temos raiz^2 e raiz^3.
por Monica santos » Sex Ago 16, 2013 14:22
- 4 Respostas
- 3952 Exibições
- Última mensagem por young_jedi

Sex Ago 16, 2013 19:01
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo: limite com raiz dentro de raiz
por roberto_trebor » Sáb Fev 15, 2014 20:45
- 1 Respostas
- 2124 Exibições
- Última mensagem por Man Utd

Dom Fev 16, 2014 17:58
Cálculo: Limites, Derivadas e Integrais
-
- Limite com Raiz
por Thyago Quimica » Sex Mai 25, 2012 18:08
- 1 Respostas
- 1343 Exibições
- Última mensagem por Guill

Sex Mai 25, 2012 20:03
Cálculo: Limites, Derivadas e Integrais
-
- Limite com Raiz
por mayconf » Sex Set 28, 2012 14:54
- 5 Respostas
- 3327 Exibições
- Última mensagem por gabriel feron

Dom Set 30, 2012 20:07
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE]raiz/ duvida
por beel » Dom Set 11, 2011 15:09
- 6 Respostas
- 2825 Exibições
- Última mensagem por beel

Dom Out 16, 2011 16:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.