por lcsimao » Qua Ago 03, 2011 14:40
Bom dia a todos,
Gosto muito de matemática e sempre tento conseguir fazer coisas novas com ajuda desta
ferramenta. Hávia visitado este site outras vezes para fazer consultas diversas, desta
vez resolvi me cadastrar pois não achei solução para a questão que vou propor. Sei
que o site pede para demostrarmos que tentamos resolver as questões para discuti-las,
em vez de termos só as respostas. Tentei de várias formas resolver o problema abaixo,
mas vou postar somente a última, que de todas a que tentei foi a mais "lúcida".
Segue:
A questão é isolar a variável "i" da equação \[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]
tentei fazer logarítmos e tentei encontrar através de raízes, mas sem sucesso.
Agradeço pela ajuda.
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
por lcsimao » Dom Ago 07, 2011 03:53
Pessoal, refiz da forma correta. Espero que agora saia uma ajuda.
Muio grato,
Tenho que isolar

no esquema abaixo:
![\[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\] \[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]](/latexrender/pictures/c32a9ed7bbf1b32cb4a8c6db470e4ea9.png)
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
por lcsimao » Qui Ago 11, 2011 08:36
Bom dia a Todos!!
Ninguém?? Uma só tentativa??
Por favor, há alguém que consiga??
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivado] Isolando Variável
por Niiseek » Seg Out 29, 2012 16:40
- 5 Respostas
- 2445 Exibições
- Última mensagem por Niiseek

Seg Out 29, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2243 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2212 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por Danilo Dias Vilela » Qui Out 15, 2009 12:11
- 1 Respostas
- 9753 Exibições
- Última mensagem por marcelo ebm

Ter Nov 24, 2009 22:11
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por MuitaGarra » Sáb Mar 24, 2012 11:38
- 1 Respostas
- 2418 Exibições
- Última mensagem por Fabiano Vieira

Dom Abr 22, 2012 18:53
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.