por lcsimao » Qua Ago 03, 2011 14:40
Bom dia a todos,
Gosto muito de matemática e sempre tento conseguir fazer coisas novas com ajuda desta
ferramenta. Hávia visitado este site outras vezes para fazer consultas diversas, desta
vez resolvi me cadastrar pois não achei solução para a questão que vou propor. Sei
que o site pede para demostrarmos que tentamos resolver as questões para discuti-las,
em vez de termos só as respostas. Tentei de várias formas resolver o problema abaixo,
mas vou postar somente a última, que de todas a que tentei foi a mais "lúcida".
Segue:
A questão é isolar a variável "i" da equação \[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]
tentei fazer logarítmos e tentei encontrar através de raízes, mas sem sucesso.
Agradeço pela ajuda.
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
por lcsimao » Dom Ago 07, 2011 03:53
Pessoal, refiz da forma correta. Espero que agora saia uma ajuda.
Muio grato,
Tenho que isolar

no esquema abaixo:
![\[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\] \[c(\frac{i}{1-(1+i)^{-n}})=pmt\]
Fiz desta forma:
\[c=pmt-pmt\frac{1}{(1+i)^n}\]
\[c=pmt-\frac{pmt}{(1+i)^n}\]
\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]
e travei aqui...
\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]](/latexrender/pictures/c32a9ed7bbf1b32cb4a8c6db470e4ea9.png)
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
por lcsimao » Qui Ago 11, 2011 08:36
Bom dia a Todos!!
Ninguém?? Uma só tentativa??
Por favor, há alguém que consiga??
-
lcsimao
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 03, 2011 09:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Mecatrônica
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivado] Isolando Variável
por Niiseek » Seg Out 29, 2012 16:40
- 5 Respostas
- 2445 Exibições
- Última mensagem por Niiseek

Seg Out 29, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2243 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2212 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por Danilo Dias Vilela » Qui Out 15, 2009 12:11
- 1 Respostas
- 9753 Exibições
- Última mensagem por marcelo ebm

Ter Nov 24, 2009 22:11
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por MuitaGarra » Sáb Mar 24, 2012 11:38
- 1 Respostas
- 2418 Exibições
- Última mensagem por Fabiano Vieira

Dom Abr 22, 2012 18:53
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.