• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio do livro G.A. - Alfredo Steinbruch

Exercicio do livro G.A. - Alfredo Steinbruch

Mensagempor ewald » Seg Mai 23, 2011 13:09

Oi to estudando por esse livro e nao consegui fazer os exercicios propostos da primeira parte de 14 pra cima. Eu devo ter perdido algo. Acredito que se me ajudarem com o exercicio abaixo eu consigo deduzir a forma de fazer os outros.

" Os lados de um triangulo retangulo ABC (reto em A) medem 5, 12, 13. Calcular AB . AC + BA . BC + CA . CB." - Uma das minhas duvidas por exemplo é se as medidas que ele fornece sao distancias entre pontos ou o modulo do vetor (lado do triangulo).

Obs.: nao consegui botar o simbolo de vetor mas Ab, AC, BA ... sao vetores.

Obrigado.
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Exercicio do livro G.A. - Alfredo Steinbruch

Mensagempor LuizAquino » Seg Mai 23, 2011 16:51

Dica

Como nada foi informado sobre a posição dos vértices A, B e C do triângulo, vamos representá-lo em um sistema de eixos conveniente, como ilustra a figura abaixo.
triangulo-ABC.png
triangulo-ABC.png (2.03 KiB) Exibido 6654 vezes


Note, por exemplo, que nesse sistema temos que \vec{AB} = B - A = (0,\, 5) - (0,\, 0) = (0,\, 5) .

Observação
Para inserir o símbolo de vetor, use o comando tex:
Código: Selecionar todos
[tex]\vec{AB}[/tex]

Isso irá produzir:
\vec{AB}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercicio do livro G.A. - Alfredo Steinbruch

Mensagempor ewald » Seg Mai 23, 2011 20:13

Ta mas eu realmente continuo com duvida ... Estou faendo a questao de modo que os lados do triangulo sejam os Vetores que ele pede, ou seja, minha conta ta ficando assim:

(13 . 12) + (13 . 5) + (12 . 5) = 281

No entanto a resposta do livro diz que é 169.
Postei um desenho no imageshack do triangulo que eu fiz (link abaixo).

http://imageshack.us/photo/my-images/718/triv.png/
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Exercicio do livro G.A. - Alfredo Steinbruch

Mensagempor LuizAquino » Seg Mai 23, 2011 22:00

Você não está sabendo aplicar o produto interno (também chamado de produto escalar).

Dado o vetor \vec{u} = (x_1,\,y_1) e o vetor \vec{v} = (x_2,\,y_2) definimos o produto interno entre esses vetores (representado por \vec{u}\cdot \vec{v}) como sendo:
\vec{u}\cdot \vec{v} = x_1x_2 + y_1y_2

Por exemplo, o produto interno entre \vec{u} = (2,\,3) e \vec{v} = (5,\,4) é:
\vec{u}\cdot \vec{v} = 10 + 12 = 22

Desse modo, o que você precisa fazer no exercício é determinar cada um dos vetores (como eu fiz para \vec{AB} na dica anterior) e em seguida calcular a soma dos produtos internos indicados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?