• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivação por parte

derivação por parte

Mensagempor alzenir agapito » Sex Abr 29, 2011 21:56

Ola, gostaria de saber como se calcula a derivada de f(x)=\ lnx/xdx pela derivação por partes, pois, não consigo obter o resultado, por este método.
Agapito
alzenir agapito
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Abr 25, 2011 22:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: derivação por parte

Mensagempor LuizAquino » Sex Abr 29, 2011 22:07

"Derivada por partes"? Usualmente, o que temos é "Integral por partes". Além disso, esse diferencial "dx" na expressão de sua função não está fazendo sentido.

De qualquer modo, para derivar uma função do tipo \frac{f(x)}{g(x)}, use a regra do quociente:

\left[\frac{f(x)}{g(x)}\right]^{'} = \frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: derivação por parte

Mensagempor alzenir agapito » Sex Abr 29, 2011 22:24

Sim Luiz, pela regra do quociente, eu consigo achar a resposta correta,porèm, quando aplico derivação por partes não, consigo, gostaria de visualisar qual é o meu erro.
alzenir agapito
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Abr 25, 2011 22:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: derivação por parte

Mensagempor alzenir agapito » Sex Abr 29, 2011 22:27

Perdão Luiz, o caso é de integração mesmo!!!!!!!!!!!
alzenir agapito
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Abr 25, 2011 22:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: derivação por parte

Mensagempor alzenir agapito » Sex Abr 29, 2011 22:34

Gostaria de ver passo a passo com a fórmula \int udv = u*v - \int vdu
alzenir agapito
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Abr 25, 2011 22:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: derivação por parte

Mensagempor LuizAquino » Sex Abr 29, 2011 22:38

Sendo assim, ao que parece você quer resolver por partes a seguinte integral:
\int \frac{\ln x}{x} \, dx

Fazendo u=\ln x, temos que du = \frac{1}{x} dx.

Fazendo dv=\frac{1}{x} dx, temos que v = \ln x.

Usando a regra de integração por partes, temos que:
\int \frac{\ln x}{x} \, dx = uv - \int v\, du

\int \frac{\ln x}{x} \, dx = \ln^2 x - \int \frac{\ln x}{x}\, dx

2 \int \frac{\ln x}{x} \, dx = \ln^2 x

\int \frac{\ln x}{x} \, dx = \frac{1}{2}\ln^2 x + c, com c uma constante real qualquer.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: derivação por parte

Mensagempor FilipeCaceres » Sex Abr 29, 2011 22:51

Existe um programa muito bom onde se mostra as etapas da solução, veja como ficaria da sua questão.
http://www.wolframalpha.com/input/?i=integral%28log[e%2Cx]%2Fx%29

É só clicar em Show Step.

PS.:Você vai precisar copiar e colar o endereço.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: derivação por parte

Mensagempor alzenir agapito » Sáb Abr 30, 2011 06:12

Valeu Luiz
O que eu não estava visualizando é que a segunda expressão era negativa, no segundo membro e igual a expressão positiva no primeiro membro.o que daria o dobro da expressão no primeiro membro e consequentemente dividiria por 2 o segundo.
vleu mesmo!!!!!!!!!!!!!
alzenir agapito
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Abr 25, 2011 22:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: