• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica

Geometria Analitica

Mensagempor [+-++-+] » Ter Abr 12, 2011 13:55

Determine o valor de X, sabendo que o triângulo de vértices A (1,-2), B (x,4) e C (0,6) é retângulo em A.

Gostaria de saber se a resposta esta certa x= 49
Eu comecei por Pitágoras
Editado pela última vez por [+-++-+] em Ter Abr 12, 2011 21:28, em um total de 1 vez.
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Gemetria Analitica

Mensagempor LuizAquino » Ter Abr 12, 2011 14:11

Dica

Queremos que o triângulo ABC seja retângulo em B. Portanto, você pode conferir a sua resposta verificando se AB é perpendicular a BC.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Gemetria Analitica

Mensagempor [+-++-+] » Ter Abr 12, 2011 21:44

LuizAquino escreveu:Dica

Queremos que o triângulo ABC seja retângulo em B. Portanto, você pode conferir a sua resposta verificando se AB é perpendicular a BC.

Luiz Valeu
Eu tinha digitado a questão errada mais acabei de corrigi teria como vc verificar se esta certa essa questão

Retângulo em A, BC é a hipotenusa
BC² = AC² + BA²
BC= x²+4
AC= 65
BA= x²-2x+37
LOGO
x²+4=65+x²-2x+37
x=49

Estaria certo
fico no seu aguardo ou de outro colaborador
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analitica

Mensagempor LuizAquino » Qua Abr 13, 2011 10:18

Dados os pontos P=(x0, y0) e Q=(x, y), sabemos que a distância entre esses pontos será:

d(P,\, Q) = \sqrt{(x-x_0)^2+(y-y_0)^2}

Refaça o exercício lembrando-se disso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analitica

Mensagempor [+-++-+] » Qui Abr 14, 2011 21:58

LuizAquino escreveu:Dados os pontos P=(x0, y0) e Q=(x, y), sabemos que a distância entre esses pontos será:

d(P,\, Q) = \sqrt{(x-x_0)^2+(y-y_0)^2}

Refaça o exercício lembrando-se disso.


BC=\sqrt{0-x)^2+(6-4)^2}=\sqrt{x^2+4}
AC=\sqrt{(0-1)^2+(6+2)^2}=\sqrt{65}
BC=\sqrt{(x-1)^2+(4+2)^2}=\sqrt{x^2-2x+37}

Luiz o caminho seria esse
Fico no seu aguardo
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analitica

Mensagempor FilipeCaceres » Qui Abr 14, 2011 22:28

Se o teu triangulo for retângulo em A,tendo calculado o valor das distâncias basta agora fazer,

\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Geometria Analitica

Mensagempor [+-++-+] » Sex Abr 15, 2011 13:54

filipecaceres escreveu:Se o teu triangulo for retângulo em A,tendo calculado o valor das distâncias basta agora fazer,

\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2

Abraço.


Logo
x^2+4=65+x^2-2x=37}

2x=102-4}

x=49}

Luiz
Estaria correto

Desde já muito obrigado
Fique com Deus
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.