• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica

Geometria Analitica

Mensagempor [+-++-+] » Ter Abr 12, 2011 13:55

Determine o valor de X, sabendo que o triângulo de vértices A (1,-2), B (x,4) e C (0,6) é retângulo em A.

Gostaria de saber se a resposta esta certa x= 49
Eu comecei por Pitágoras
Editado pela última vez por [+-++-+] em Ter Abr 12, 2011 21:28, em um total de 1 vez.
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Gemetria Analitica

Mensagempor LuizAquino » Ter Abr 12, 2011 14:11

Dica

Queremos que o triângulo ABC seja retângulo em B. Portanto, você pode conferir a sua resposta verificando se AB é perpendicular a BC.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Gemetria Analitica

Mensagempor [+-++-+] » Ter Abr 12, 2011 21:44

LuizAquino escreveu:Dica

Queremos que o triângulo ABC seja retângulo em B. Portanto, você pode conferir a sua resposta verificando se AB é perpendicular a BC.

Luiz Valeu
Eu tinha digitado a questão errada mais acabei de corrigi teria como vc verificar se esta certa essa questão

Retângulo em A, BC é a hipotenusa
BC² = AC² + BA²
BC= x²+4
AC= 65
BA= x²-2x+37
LOGO
x²+4=65+x²-2x+37
x=49

Estaria certo
fico no seu aguardo ou de outro colaborador
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analitica

Mensagempor LuizAquino » Qua Abr 13, 2011 10:18

Dados os pontos P=(x0, y0) e Q=(x, y), sabemos que a distância entre esses pontos será:

d(P,\, Q) = \sqrt{(x-x_0)^2+(y-y_0)^2}

Refaça o exercício lembrando-se disso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analitica

Mensagempor [+-++-+] » Qui Abr 14, 2011 21:58

LuizAquino escreveu:Dados os pontos P=(x0, y0) e Q=(x, y), sabemos que a distância entre esses pontos será:

d(P,\, Q) = \sqrt{(x-x_0)^2+(y-y_0)^2}

Refaça o exercício lembrando-se disso.


BC=\sqrt{0-x)^2+(6-4)^2}=\sqrt{x^2+4}
AC=\sqrt{(0-1)^2+(6+2)^2}=\sqrt{65}
BC=\sqrt{(x-1)^2+(4+2)^2}=\sqrt{x^2-2x+37}

Luiz o caminho seria esse
Fico no seu aguardo
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analitica

Mensagempor FilipeCaceres » Qui Abr 14, 2011 22:28

Se o teu triangulo for retângulo em A,tendo calculado o valor das distâncias basta agora fazer,

\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Geometria Analitica

Mensagempor [+-++-+] » Sex Abr 15, 2011 13:54

filipecaceres escreveu:Se o teu triangulo for retângulo em A,tendo calculado o valor das distâncias basta agora fazer,

\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2

Abraço.


Logo
x^2+4=65+x^2-2x=37}

2x=102-4}

x=49}

Luiz
Estaria correto

Desde já muito obrigado
Fique com Deus
[+-++-+]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Abr 11, 2011 14:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?