• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor LausDeo » Sáb Mar 26, 2011 13:59

Estamos estudando em dupla para os vestibulares no fim de ano, nos deparamos com um problema que diz o seguinte: "Considere-se o conjunto M de todos os números inteiros formados por exatamente três algarismos iguais. Pode-se afirmar que todo n ? M é múltiplo de: a) 5; b) 7; c) 13; d) 17 ou e) 37.

Fazendo as contas com base nas opções de respostas, encontramos a solução "e)37". Porém a dúvida é quais números representam o "n", eu entendo que são tão somente: 111; 222; 333; 444; 555; 666; 777; 888 e 999. Mas o outro estudante acredita que seja todos os números múltiplos de 37. Quais números estão representando o "n"?
LausDeo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 26, 2011 13:34
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico RH
Andamento: cursando

Re: Conjuntos

Mensagempor FilipeCaceres » Sáb Mar 26, 2011 14:49

Vamos interpretar o enunciado:
Considere-se o conjunto M de todos os números INTEIROS formados por exatamente três algarismos iguais.
Logo,
M=\left \{-999,...,-333,-222,-111,111,222,333,...,999 \right \}

Se n ? M, então, n é um número que pertence ao conjunto M, e não todos os multiplos de 37, pois 148 é multiplo e não está no conjunto.

Sabendo como o conjunto é formado acredito que seja suficiente para achar a resposta.

Qualquer dúvido é só perguntar.

Abraço
Editado pela última vez por FilipeCaceres em Sáb Mar 26, 2011 15:09, em um total de 2 vezes.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Conjuntos

Mensagempor LuizAquino » Sáb Mar 26, 2011 15:06

"Considere-se o conjunto M de todos os números inteiros formados por exatamente três algarismos iguais"

Isso quer dizer que qualquer elemento x pertencente a M tem o formato: x = 100a+10a+a, onde a é inteiro e -10 < a <10.

Desse modo, temos que x=111a. Como 111 é um múltiplo de 37, então x também é múltiplo desse número.

Portanto, podemos afirmar que qualquer elemento do conjunto M é um múltiplo de 37.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Conjuntos

Mensagempor LausDeo » Sáb Mar 26, 2011 15:37

Vendo as duas respostas, entendi que há divergências, pois a primeira limita os conjunto M, somente em "-999, 888, 777, ... ..., 888 e 999. A segunda resposta dia que todo múltiplo de 37 pertence ao M.
O que é verdade...?
LausDeo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 26, 2011 13:34
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico RH
Andamento: cursando

Re: Conjuntos

Mensagempor LuizAquino » Sáb Mar 26, 2011 15:48

LausDeo escreveu: A segunda resposta diz que todo múltiplo de 37 pertence ao M.

Dizer que "todo múltiplo de 37 pertence a M" não é a mesma coisa de dizer que "qualquer elemento do conjunto M é um múltiplo de 37" (que foi o que eu disse). Tenha mais cuidado com a leitura.

Vamos a pergunta do exercício:
Pode-se afirmar que todo n ? M é múltiplo de:
a) 5
b) 7
c) 13
d) 17
e) 37


Perceba que não há a afirmação no exercício de que M deve ser igual ao conjunto dos múltiplos dos números das alternativas. O exercício quer apenas saber se qualquer elemento de M pode ser um múltiplo dos números nas alternativas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59