por Kelvin Brayan » Qui Mar 10, 2011 12:18
1.(FUVEST-SP) Dados dois números reais
a e
b que satisfazem as igualdades 1<a<2 e 3<b<5, pode-se afirmar que
A)

B)

C)

D)

E)

-
Kelvin Brayan
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Dom Fev 20, 2011 16:50
- Localização: Varginha - MG
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Inglês
- Andamento: cursando
por Elcioschin » Qui Mar 10, 2011 12:23
a > 1
b > 3
a/b > 1/3
a < 2
b < 5
a/b < 2/5 ----> Alternativa A
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Kelvin Brayan » Qui Mar 10, 2011 15:54
Valeu !
-
Kelvin Brayan
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Dom Fev 20, 2011 16:50
- Localização: Varginha - MG
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Inglês
- Andamento: cursando
por LuizAquino » Qui Mar 10, 2011 18:19
O exercício foi da prova da (FUVEST-1999). O texto original da questão é:
(FUVEST-SP) Dados dois números reais a e b que satisfazem as desigualdades

e

, pode-se afirmar que:
A)

B)

C)

D)

E)

O gabarito oficial é C). Tanto a prova quanto o gabarito estão disponíveis no endereço:
FUVEST Provas 1999http://www.fuvest.br/vest1999/provas/provas.stmAgora, vamos a resolução.
Nós vamos precisar de três propriedades das inequações:
(i) Se

e

, então

.
(ii) Se

, então

.
(iii) Se

e

, então

.
Multiplicando-se a inequação

por

(que é um número positivo), obtemos

.
Da inequação

, temos que

.
Portanto, de

e

concluímos que

.
Multiplicando-se a inequação

por

(que é um número positivo), obtemos

, ou ainda,

.
Multiplicando-se a inequação

por

, temos que

.
Portanto, de

e

concluímos que

.
Desse modo, temos que

.
Observaçõesa > 1
b > 3
a/b > 1/3
Isso é falso! Note que se a=9/8 e b=9/2 nós temos que 1 < a < 2 e 3 < b < 5, mas a/b < 1/3.
a < 2
b < 5
a/b < 2/5
Isso também é falso! Note que se a=7/4 e b=7/2 nós temos que 1 < a < 2 e 3 < b < 5, mas a/b > 2/5.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probleminha fuvest
por karen » Ter Nov 27, 2012 15:19
- 3 Respostas
- 1647 Exibições
- Última mensagem por Cleyson007

Ter Nov 27, 2012 15:47
Álgebra Elementar
-
- probleminha
por leandro moraes » Seg Mai 30, 2011 08:06
- 1 Respostas
- 1798 Exibições
- Última mensagem por carlosalesouza

Seg Mai 30, 2011 09:34
Cálculo: Limites, Derivadas e Integrais
-
- probleminha 2
por leandro moraes » Ter Mai 31, 2011 14:41
- 1 Respostas
- 2780 Exibições
- Última mensagem por carlosalesouza

Ter Mai 31, 2011 17:42
Cálculo: Limites, Derivadas e Integrais
-
- Probleminha
por Pjrleal » Qua Mar 14, 2012 10:11
- 1 Respostas
- 2898 Exibições
- Última mensagem por LuizAquino

Qua Mar 14, 2012 15:42
Álgebra Elementar
-
- Probleminha
por karen » Ter Nov 27, 2012 15:55
- 2 Respostas
- 2176 Exibições
- Última mensagem por karen

Ter Nov 27, 2012 16:22
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.