• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor vdzz » Qua Fev 16, 2011 17:15

Olá, alguém poderia me ajudar com este exercício, explicando passo a passo e se possível passar algum outro para eu tentar fazer ?
Desde já agradeço.

Ai vai o exercício:
Imagem
vdzz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 16, 2011 17:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Limite

Mensagempor Molina » Qua Fev 16, 2011 17:19

Boa tarde.

Por favor, coloque o enunciado completo da questão.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor vdzz » Qua Fev 16, 2011 17:37

A questão é achar o limite de x, naquela função.
vdzz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 16, 2011 17:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Limite

Mensagempor Molina » Qua Fev 16, 2011 18:19

Fiz usando L`Hopital, é válido?

Possa até ter outro método, mas usando este procedimento sai em 3 linhas...

A resposta deu \frac{n}{m}


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor vdzz » Qua Fev 16, 2011 18:48

Creio que sim.

Tem como você me explicar esse procedimento e me explicar passo a passo como você fez?

No exemplo em que a professora deu, ela usou substituição.
vdzz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 16, 2011 17:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Fev 16, 2011 19:18

Seja o limite:
\lim_{x\to 1}\frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1}

Façamos a substituição u = \sqrt[n]{x}, obtendo assim um novo limite (note que u também tenderá a 1):
\lim_{u\to 1}\frac{\sqrt[m]{u^n} - 1}{u - 1}

Arrumando de forma conveniente:
\lim_{u\to 1}\frac{\left(\sqrt[m]{u}\right)^n - 1^n}{\left(\sqrt[m]{u}\right)^m - 1^m}

Usando o produto notável a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \ldots + a^2b^{n-3} + ab^{n-2} + b^{n-1}):

\lim_{u\to 1}\frac{(\sqrt[m]{u} - 1)(\sqrt[m]{u}^{n-1} + \sqrt[m]{u}^{n-2} + \sqrt[m]{u}^{n-3}+\ldots \sqrt[m]{u}^2 + \sqrt[m]{u} + 1)}{(\sqrt[m]{u} - 1)(\sqrt[m]{u}^{m-1} + \sqrt[m]{u}^{m-2} + \sqrt[m]{u}^{m-3}+\ldots \sqrt[m]{u}^2 + \sqrt[m]{u} + 1)}

\lim_{u\to 1}\frac{\sqrt[m]{u}^{n-1} + \sqrt[m]{u}^{n-2} + \sqrt[m]{u}^{n-3}+\ldots \sqrt[m]{u}^2 + \sqrt[m]{u} + 1}{\sqrt[m]{u}^{m-1} + \sqrt[m]{u}^{m-2} + \sqrt[m]{u}^{m-3}+\ldots \sqrt[m]{u}^2 + \sqrt[m]{u} + 1}

Não há mais indeterminação! Fazendo u tender a 1, temos que cada \sqrt[m]{x}^k (com k=n-1, n-2, ..., 1) no numerador será igual a 1. Quantos desses termos nós temos? Nós temos n-1 desses termos. Já no denominador nós temos m-1 termos do tipo \sqrt[m]{x}^k (com k=m-1, m-2, ..., 1).

Portanto, o limite original é equivalente há:
\lim_{x\to 1}\frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1} = \frac{(n-1)\cdot 1 + 1}{(m-1)\cdot 1 + 1} = \frac{n}{m}

Obviamente, como indicou o colega Molina, usando a regra de L'Hôpital o exercício sai em poucas linhas. Mas, partindo do pressuposto que a pessoa ainda não tenha estudado derivada, essa regra não poderia ser aplicada. De qualquer modo, segue aqui a solução sem usar essa regra.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor vdzz » Qua Fev 16, 2011 20:48

Valeu luiz.
vdzz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 16, 2011 17:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Limite

Mensagempor Molina » Qua Fev 16, 2011 20:54

Perfeita a solução so Luiz Aquino.

Mas para adiantar provavelmente o assunto que você estudará mais adiante, segue a solução por L'Hopital:

Seja \lim_{x\to 1}\frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1}. Substituindo x por 1 temos uma indeterminação do tipo \frac{0}{0}. Sendo assim, podemos usar a regra de L'Hopital que nada mais é do que derivar o numerador e derivar o denominador (separadamente) e posteriormente calcular o limite:

\lim_{x\to 1}\frac{(\sqrt[m]{x} - 1)'}{(\sqrt[n]{x} - 1)'}=\lim_{x\to 1}\frac{\frac{1}{m}*x^{\frac{1-m}{m}}}{\frac{1}{n}*x^{\frac{1-n}{n}}}=\frac{\frac{1}{m}}{\frac{1}{n}}=\frac{n}{m}


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor LuizAquino » Qua Fev 16, 2011 21:03

Para aguçar ainda mais a curiosidade sobre esse exercício, poderíamos fazer ainda uma substituição bem elegante, que seria fazer u=x^{mn}, pois desse modo o limite ficaria bem simples:
\lim_{u\to 1}\frac{u^n - 1}{u^m - 1}

Basta agora aplicar o produto notável:
\lim_{u\to 1}\frac{(u - 1)(u^{n-1} + u^{n-2} + \ldots + u^2 + u + 1)}{(u-1)(u^{m-1} + u^{m-2} + \ldots u^2 + u + 1)}

\lim_{u\to 1}\frac{u^{n-1} + u^{n-2} + \ldots + u^2 + u + 1}{u^{m-1} + u^{m-2} + \ldots + u^2 + u + 1}

Temos algo do tipo u^k n-1 vezes no numerador e m-1 vezes no denominador, novamente o limite original é equivalente a:

\lim_{x\to 1}\frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1} = \frac{(n-1)\cdot 1 + 1}{(m-1)\cdot 1 + 1} = \frac{n}{m}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor vdzz » Qua Fev 16, 2011 23:03

Vou dar uma olhada em como se deriva, pois parece bem mais prático, valeu molina.

Esse seu segundo exemplo Luiz, achei mais tranquilo comparado ao primeiro.

Valeu pela ajuda (:
vdzz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 16, 2011 17:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Fev 17, 2011 08:08

vdzz escreveu:Esse seu segundo exemplo Luiz, achei mais tranquilo comparado ao primeiro.

Provavelmente você está dizendo isso pois no primeiro exemplo envolvia o trabalho com raízes. Gostaria de lhe deixar uma dica: todo estudante da área de exatas é obrigado a saber trabalhar com raízes (ou qualquer outro número que apareça)!

Se você não estiver lembrando das propriedades de radiciação, indico para você os vídeos do Nerckie no YouTube:
Matemática Zero - Aula 10 - Radiciação - Primeira Parte (Total de 3 vídeos)
http://www.youtube.com/watch?v=K73GLTmT8Ys

Matemática Zero - Aula 12 - Racionalização - Primeira Parte (Total de 4 vídeos)
http://www.youtube.com/watch?v=qvVV_6mYVgo
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor LuizAquino » Sex Fev 18, 2011 10:19

LuizAquino escreveu:Para aguçar ainda mais a curiosidade sobre esse exercício, poderíamos fazer ainda uma substituição bem elegante, que seria fazer u=x^{mn}, pois desse modo o limite ficaria bem simples:
\lim_{u\to 1}\frac{u^n - 1}{u^m - 1}


Apenas uma correção, a substituição é x=u^{mn} e não u=x^{mn} como foi escrito anteriormente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}