• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equações literais do 2°grau

equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 12:19

resolva esta equaçãe sujeitas a parâmetros , supostas possíveis em função dos seus coenficientes


A) \frac{x^2}{ab}-\frac{x}{b}=\frac{2a-2x}{a}


bom , a minha duvida é como encontrar a outra raiz dessa equaçao ,
já q tem tudas possíveis raizes pra esta equação !
eu vou postar como eu encontrei uma .


B) x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0


essa eu nem consegui encontrar nenhuma raiz .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 13:06

A) \frac{x^2-ax}{ab}=\frac{2ab-2bx}{ab}

x^2-ax=2ab-2bx

x(x-a)=-2b(-a+x)

x=\frac{-2b(x-a)}{(x-a)}

x=-2b

Agora falta encontra a outra raiz q é {a} e eu nao sei como faz pra encontra-la?

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2

\Delta={b}^{2}-4ac

\Delta=\left(-a\sqrt[]{2x} \right)^2-4.1.\frac{-3}{2}a^2

\Delta=2a^2x+6a^2

\Delta=\sqrt[]{2a^2x+6a^2}

\Delta=a^2\sqrt[]{2x+6}

x=\frac{-b+-\sqrt[]{\Delta}}{2a} \rightarrow x^1=\frac{a\sqrt[]{2x}+a^2\sqrt[]{2x+6}}{2} \rightarrow x^2=\frac{a\sqrt[]{2x}-(a^2\sqrt[]{2x+6})}{2}


foi o q eu consegui fazer mais a resposta nao é essa .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 13:43

Boa tarde, Stanley.

Em relação a questão A) basta você mudar os termos na parte que coloca em evidência em ambos os lados, veja:

x^2-ax=2ab-2bx

x^2+2bx=2ab+ax

x(x+2b)=a(2b+x)

x=\frac{a(2b+x)}{(x+2b)}

x=a

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 16:25

entendi obrigado .

e enquanto a alternativa B) , como q fica ?
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 17:22

stanley tiago escreveu:entendi obrigado .

e enquanto a alternativa B) , como q fica ?

Boa tarde,

Você cometeu um erro fazendo b=-a\sqrt{2x}:
stanley tiago escreveu:
B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2


O coeficiente não deveria ter o x. Logo, o correto seria:

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2}      ;     c= -\frac{3}{2}a^2

Verifica se agora dá certo.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 17:24

ah entendi , obrigado :-D
até mais
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59