• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Mackenzie) função 1° grau

(Mackenzie) função 1° grau

Mensagempor my2009 » Seg Dez 06, 2010 17:35

Se os números reais a e b são tais que a função f(x) =\frac{a+bx+4}{ax-2b} tem dominio R -{ -2} e f(1) = -2 então a x b = ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (Mackenzie) função 1° grau

Mensagempor alexandre32100 » Seg Dez 06, 2010 20:50

ax-2b\not=0
O enunciado diz que para isso x=-2;
-2a-2b=0 \text{ ou }2a+2b=0
Da mesma forma, se f(1)=-2,
\dfrac{a+b\cdot1+4}{a\cdot1-2b}=-2\\
a+b+4=-2a+4b\\
3a-3b=-4

Armamos o sistema \begin{cases}2a+2b=0\\3a-3b=-4\end{cases}, agora é só resolvê-lo
alexandre32100
 

Re: (Mackenzie) função 1° grau

Mensagempor davi_11 » Seg Dez 06, 2010 20:54

-2a-2b=0 (no denominador)
-2a=2b
b=-a

f(1)=\dfrac{a-a+4}{a-2(-a)}=-2
\dfrac{4}{3a}=-2
-6a=4
a=\dfrac{-2}{3}
b=\dfrac{2}{3}
a \times b=\dfrac{-4}{9}
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: (Mackenzie) função 1° grau

Mensagempor my2009 » Seg Dez 06, 2010 23:17

Obrigada !!! agradeço muito = )
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.