• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular este problema?

Como calcular este problema?

Mensagempor kurt » Qui Nov 04, 2010 19:50

Tenho uma chapa de papelão onde estão desenhados 18 circulos e 1 retangulo.
Em outra chapa estão desenhados 6 circulos e 15 retangulos.
Preciso determinar qual porção de papelão foi usada para 1 circulo e qual porção para 1 retangulo.
grato
kurt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Nov 04, 2010 19:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletrotecnica
Andamento: formado

Re: Como calcular este problema?

Mensagempor Elcioschin » Sex Nov 05, 2010 18:01

Não consegui entender o enunciado! Dá para explicar melhor?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como calcular este problema?

Mensagempor kurt » Sex Nov 05, 2010 19:00

Bem, vou tentar um exemplo com confecção de camisa.
Supondo que para formar uma camisa eu precise de corpo e manga.
Em uma area de tecido consegui colocar 18 mangas e no espaço restante,1 corpo .
Em outra area de tecido coloquei 15 corpos e no resto coube 6 mangas .
Agora preciso saber qual porção de tecido foi usado para manga e qual porção para corpo.
grato.
kurt
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Nov 04, 2010 19:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletrotecnica
Andamento: formado

Re: Como calcular este problema?

Mensagempor 0 kelvin » Sex Nov 05, 2010 20:27

Isso me lembra aqueles desafios que a questão pede a área máxima de um quadrado inscrito num triângulo por exemplo.

Como não sei a área do papelão, só consigo fazer um "chute":

Digamos que sejam 18 círculos lado a lado. Chamando o raio de 1. A largura de 18 círculos lado a lado será de 36 unidades. A altura dessa fileira de círculos será de 2 unidades. Agora e o restante do papelão? Não sei quanto que sobra, só posso imaginar que 18 círculos alinhados ocupem uma fileira de um retângulo de área 36 x 2.

Seguindo esse mesmo raciocínio, colocaria 6 círculos lado a lado, mas a largura dessa fileira de círculos deverá se igual à largura da fileira de 18 círculos. Mas isso, levando em conta que o papelão tenha a mesma largura nos dois casos. 36 unidades por 6 círculos, raio = 3 e altura = 6.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Como calcular este problema?

Mensagempor Elcioschin » Sex Nov 05, 2010 22:20

kurt

Para poder ajudá-lo necessitamos de mais informações:

1) Dimensões do tecido
2) Dimensões do corpo e da manga
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}