• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação] Talvez de 3º?

[Equação] Talvez de 3º?

Mensagempor 20nho » Seg Ago 06, 2012 21:04

Estava resolvendo uns exercícios de equação de 2º grau, mas na ultima pergunta veio uma conta que eu não soube resolver

A equação é a seguinte:
(x-1) (x² - 3x + 2) = (x-1) (2x - 4)

Alguém poderia me ajudar?

Agradeço.
20nho
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 02, 2012 21:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação] Talvez de 3º?

Mensagempor MarceloFantini » Seg Ago 06, 2012 21:20

Note que x^2 -3x +2 = (x-1)(x-2), e 2x-4=2(x-2), daí

(x-1)(x^2 -3x+2) = (x-1)(x-1)(x-2) = (x-1)(2x-4)=2(x-1)(x-2).

Isto mostra que a equação é válida para x=1, x=2 e x-1=2 \implies x=3. Vamos detalhar esta última passagem: se x=1, então 0=0 e tudo certo. Se x\neq 1, podemos dividir por x-1 ambos lados, gerando (x-1)(x-2)=2(x-2). Se x=2, temos 0=0 e tudo certo. Se x \neq 2, podemos dividir por x-2 ambos lados, gerando x-1=2 e finalmente x=3.

Obs.: Não existem graus de equações, o que existem são graus de polinômios. Neste caso, temos um polinômio de terceiro grau.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}