• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral dupla

integral dupla

Mensagempor visantos » Sex Out 10, 2014 12:00

Quando olhamos uma região D do plano xy como uma lâmina de densidade \sigma (x,y), a integral dupla \int\int_D \sigma(x,y)dxdy é interpretada como a massa da lâmina. Uma lâmina de densidade constante \sigma(x,y)=6, tem o formato da região delimitada pelo eixo y e pelas curvas y=5\;\;\textrm{e}\;\;y=5x^2. Qual o valor numérico da massa da lâmina?
visantos
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Out 10, 2014 11:54
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: integral dupla

Mensagempor adauto martins » Sáb Out 11, 2014 18:53

meu caro visantos,
edite melhor a questao,nao deu pra entender as equaçoes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: integral dupla

Mensagempor adauto martins » Dom Out 12, 2014 21:19

\int\int_D \sigma(x,y)dxdy=\int_{0}^{5}\int_{-1}^{1}\varrho(x,y)dxdy=\int_{0}^{5}\int_{-1}^{1}\ 6  dxdy==\int_{0}^{5}6.(1-(-1))dy=12.\int_{0}^{5}dy=12.5=60 unidades de massa(g,kg,...)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: integral dupla

Mensagempor adauto martins » Seg Out 13, 2014 18:41

EITA,MAIS UMA CORREÇAO...
como a lamina eh delimitada pelo eixo y...entao a M=30 u.m...a integral em relaçao a x faz-se no intervalo[0,1]e nao[-1,1]...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.