• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[teoria de limites] dúvida numa questão de prova

[teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sex Abr 13, 2012 23:38

Olá, colegas

Caiu a seguinte questão na minha prova de Cálculo I:

"Considere o polinômio de grau n, onde n é ímpar, dado por:

p(x) = a_n x^n + a_n_-_1{x}^{n-1}+a_n_-_2{x}^{n-2}+...+a_1x+a_0,

e os a são todos reais. Mostre, usando a teoria de limites, que p(x) admite pelo menos uma raiz real."

Daí eu respondi exatamente assim:

Toda função polinomial é contínua. E de acordo com o Teorema de Bolzano, em um intervalo [a,b] se f(a) e f(b) tiverem sinais contrários, então haverá pelo menos um c em que f(c) = 0.

Pela correção do professor, ele circulou o "f(a)" e o "f(b)" e escreveu "Isso ocorre no polinômio dado?" E a questão foi zerada.

Minha dúvida então é se eu errei por colocar f em vez de p, ou se ela é resolvida corretamente de outra forma.

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor MarceloFantini » Sáb Abr 14, 2012 00:05

Não foi pela mera troca de nome da função que você errou, mas sim porque simplesmente não resolveu. Seu raciocínio não está errado, porém pense: você exibiu dois pontos tais que um tenha imagem positiva e outro imagem negativa? A resposta é não.

Como o polinômio tem grau ímpar, temos \lim_{x \to - \infty} p(x) = - \infty enquanto \lim_{x \to +\infty} p(x) = + \infty, logo existem pontos a, b \in \mathbb{R} tais que p(a) < 0 e p(b) > 0 pelo fato que todo polinômio é contínuo. Pelo teorema de Bolzano, segue a conclusão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [teoria de limites] dúvida numa questão de prova

Mensagempor Fabio Wanderley » Sáb Abr 14, 2012 00:43

Obrigado, Marcelo!

Agora pude ver que realmente não respondi a questão, faltaram os pontos... E eu ainda não havia considerado o "Mostre, usando a teoria de limites(...)"
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?