• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (tangência)

Questão prova concurso (tangência)

Mensagempor fernandocez » Dom Mar 06, 2011 12:12

48. O raio da circunferência que tem centro no ponto (3,4) e tangencia e reta da equação x+2y = 1 é:
resp.: 2\sqrt[]{5}

Essa eu consegui fazer mas estou com dúvida se usei o caminho certo ou mais curto.
Eu fiz assim:

Encotrei a distância entre o centro da circunferência P(3,4) e a reta (x+2y = 1). Prá isso usei essa fórmula.

d(P,r) = \frac{\left|ax+by+c \right|}{\sqrt[]{{a}^{2}+{b}^{2}}} = \frac{\left|-\frac{1}{2}3-1*4+\frac{1}{2} \right|}{\sqrt[]{{\left(-\frac{1}{2} \right)}^{2}+{\left(-1 \right)}^{2}}} = 2\sqrt[]{5}

Eu queria saber se o caminho tá bom ou teria um mais rápido no concurso?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (tangência)

Mensagempor Renato_RJ » Dom Mar 06, 2011 15:13

Fernando, eu acho esse método o mais rápido mesmo, pois você usou a fórmula para achar a distância entre um ponto e uma reta dada sua equação geral, mas achei suas contas confusas, eu fiz desse jeito, veja:

x + 2y = 1 \Rightarrow \, x + 2y - 1 = 0

Agora que eu tenho a equação da reta na forma ax + by + c =0, posso usar a fórmula:

d = \frac{\left| ax + by + c \right |}{\sqrt{a^2 + b^2}} \Rightarrow \, d = \frac {\left| (1 \cdot 3) + (2 \cdot 4) - 1 \right |}{\sqrt{1 + 4}} \Rightarrow \, d = \frac{10}{\sqrt{5}}

Retirando a raiz do denominador, teremos:

d = \frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \Rightarrow \, d = \frac{10 \sqrt{5}}{5} \Rightarrow \, d = 2 \sqrt{5}

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Questão prova concurso (tangência)

Mensagempor fernandocez » Dom Mar 06, 2011 17:30

Renato_RJ escreveu:Fernando, eu acho esse método o mais rápido mesmo, pois você usou a fórmula para achar a distância entre um ponto e uma reta dada sua equação geral, mas achei suas contas confusas...


Valeu Renato, ficou muito mais fácil. Realmente o que eu fiz fica muito trabalhoso. É que peguei a equação: x+2y = 1 e ignorantemente arrumei ela até ficar: -x/2-y+1/2=0 e não tinha necessidade, era só pegar a eq. x+2y = 1 e igualar a 0: x+2y-1 = 0 que nem vc fez. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}