• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (tangência)

Questão prova concurso (tangência)

Mensagempor fernandocez » Dom Mar 06, 2011 12:12

48. O raio da circunferência que tem centro no ponto (3,4) e tangencia e reta da equação x+2y = 1 é:
resp.: 2\sqrt[]{5}

Essa eu consegui fazer mas estou com dúvida se usei o caminho certo ou mais curto.
Eu fiz assim:

Encotrei a distância entre o centro da circunferência P(3,4) e a reta (x+2y = 1). Prá isso usei essa fórmula.

d(P,r) = \frac{\left|ax+by+c \right|}{\sqrt[]{{a}^{2}+{b}^{2}}} = \frac{\left|-\frac{1}{2}3-1*4+\frac{1}{2} \right|}{\sqrt[]{{\left(-\frac{1}{2} \right)}^{2}+{\left(-1 \right)}^{2}}} = 2\sqrt[]{5}

Eu queria saber se o caminho tá bom ou teria um mais rápido no concurso?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (tangência)

Mensagempor Renato_RJ » Dom Mar 06, 2011 15:13

Fernando, eu acho esse método o mais rápido mesmo, pois você usou a fórmula para achar a distância entre um ponto e uma reta dada sua equação geral, mas achei suas contas confusas, eu fiz desse jeito, veja:

x + 2y = 1 \Rightarrow \, x + 2y - 1 = 0

Agora que eu tenho a equação da reta na forma ax + by + c =0, posso usar a fórmula:

d = \frac{\left| ax + by + c \right |}{\sqrt{a^2 + b^2}} \Rightarrow \, d = \frac {\left| (1 \cdot 3) + (2 \cdot 4) - 1 \right |}{\sqrt{1 + 4}} \Rightarrow \, d = \frac{10}{\sqrt{5}}

Retirando a raiz do denominador, teremos:

d = \frac{10}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \Rightarrow \, d = \frac{10 \sqrt{5}}{5} \Rightarrow \, d = 2 \sqrt{5}

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Questão prova concurso (tangência)

Mensagempor fernandocez » Dom Mar 06, 2011 17:30

Renato_RJ escreveu:Fernando, eu acho esse método o mais rápido mesmo, pois você usou a fórmula para achar a distância entre um ponto e uma reta dada sua equação geral, mas achei suas contas confusas...


Valeu Renato, ficou muito mais fácil. Realmente o que eu fiz fica muito trabalhoso. É que peguei a equação: x+2y = 1 e ignorantemente arrumei ela até ficar: -x/2-y+1/2=0 e não tinha necessidade, era só pegar a eq. x+2y = 1 e igualar a 0: x+2y-1 = 0 que nem vc fez. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.