• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade...

Probabilidade...

Mensagempor gustavowelp » Qui Nov 18, 2010 09:32

Estou com dúvidas nesta questão. Não sei como resolvê-la. Agradeço ajuda desde já!

Uma pasta de arquivo continha 10 folhas numeradas de 1 a 10. Três folhas foram retiradas do arquivo ao acaso e não foram repostas. Assinale a alternativa que apresenta a probabilidade aproximada de as folhas retiradas serem consecutivas.

A resposta correta é \frac{(10 - 2)! . 3!}{10!}

Obrigado!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Probabilidade...

Mensagempor 0 kelvin » Qui Nov 18, 2010 14:20

Maneiras distintas de serem sorteadas três folhas, ignorando a numeração: \frac{10!}{7!\cdot3!} = 120

Espaço amostral favorável: {123} até {8910}. Tem 8 trios de numerações possíveis, dentre as 120 combinações possíveis.

\frac{8}{120} = \frac{1}{15}

Se simplificar \frac{8!\cdot3!}{10!} = \frac{\cancel{8!}\cdot\cancel{3}\cdot\cancel{2}}{\cancel{10}\cdot\cancel{9}\cdot\cancel{8!}} = \frac{1}{5\cdot3}

Tentei chegar na fórmula da resposta mas não consegui entender... Fiz assim: cada trio, 123 por ex, pode formar 3! arranjos diferentes. Se multiplicar 6 x 8 = 48. E partir daí não sei mais.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Probabilidade...

Mensagempor gustavowelp » Qui Nov 18, 2010 15:40

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Estatística

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)