• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressão aritmetica

progressão aritmetica

Mensagempor zenildo » Ter Ago 13, 2013 19:19

CALCULE A SOMA DOS 23 PRIMEIROS TERMOS DA P.A. (1;4;7;10;...)
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: progressão aritmetica

Mensagempor Pessoa Estranha » Sex Ago 16, 2013 16:06

zenildo escreveu:CALCULE A SOMA DOS 23 PRIMEIROS TERMOS DA P.A. (1;4;7;10;...)


Sabemos que uma Progressão Aritmética consiste num conjunto de números, finito ou infinito, tais que a diferença entre um e seu antecessor é uma razão. Bem, tomemos uma razão r da P.A. em questão; além disso, a1=1, a2=4, a3=7, a4=10 e assim por diante. Observe que: a2 - a1 = 4 - 1 = 3; a3 - a2 = 7 - 4 = 3; a4 - a3 = 10 - 7 = 3; e assim sucessivamente. Logo, a razão é r = 3. Para calcular o resultado da soma dos 23 primeiros números da P.A em questão, podemos usar uma fórmula ou, então pensar da seguinte maneira:

Por exemplo: qual é o resultado de 1+2+3+4+5 ? Podemos fazer assim:
1+2+3+4+5
5+4+3+2+1
---------------
6+6+6+6+6 = 6 . 5 = 30

Este resultado devemos dividir por 2 e, portanto: 30/2 = 15 = 1+2+3+4+5.

Observe que, o que eu fiz foi pensar o seguinte: se temos que saber quanto vale a soma de 1+2+3+4+5, podemos fazer aquele esqueminha que consiste em saber quanto vale a soma do primeiro termo com o último, do segundo com o penúltimo e assim por diante. Então, obtemos que 1+5=4+2=3+3=4+2=5+1=6. Contudo, obtemos 5 vezes tal valor e, portanto, obtemos o resultado 30, mas temos que dividir por 2, pois, caso contrário, estaríamos contando a soma desses números duas vezes, o que nos daria a resposta errada.

Esta é só uma maneira de pensar que, talvez, pudesse facilitar. Contudo, se não fui muito clara na explicação, aqui vai a fórmula para resolver.

\frac{({a}_{1}+{a}_{n}).n}{2}

Daí, basta substituir:

{a}_{1}=1 e {a}_{n}={a}_{23}
n = 23

Assim, \frac{(1+{a}_{23}).23}{2}.

Contudo, quem é {a}_{23} ?
Basta lembrar que {a}_{23} = {a}_{1}+22r = 1+22.(3)= 1+66=67
Então: \frac{(1+67).23}{2}=\frac{68.23}{2}=\frac{34.2.23}{2}=34.23= 782

Logo, 782 é o resultado da soma dos 23 primeiros termos da P.A. em questão.

Observação: a23 = a1+22r justamente por tratar-se de uma P.A, pois temos que, por exemplo, a2=a1+r; a3=a1+2r; a4=a1+3r e assim por diante.

Ok?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D