• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressão aritmetica

progressão aritmetica

Mensagempor zenildo » Ter Ago 13, 2013 19:19

CALCULE A SOMA DOS 23 PRIMEIROS TERMOS DA P.A. (1;4;7;10;...)
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: progressão aritmetica

Mensagempor Pessoa Estranha » Sex Ago 16, 2013 16:06

zenildo escreveu:CALCULE A SOMA DOS 23 PRIMEIROS TERMOS DA P.A. (1;4;7;10;...)


Sabemos que uma Progressão Aritmética consiste num conjunto de números, finito ou infinito, tais que a diferença entre um e seu antecessor é uma razão. Bem, tomemos uma razão r da P.A. em questão; além disso, a1=1, a2=4, a3=7, a4=10 e assim por diante. Observe que: a2 - a1 = 4 - 1 = 3; a3 - a2 = 7 - 4 = 3; a4 - a3 = 10 - 7 = 3; e assim sucessivamente. Logo, a razão é r = 3. Para calcular o resultado da soma dos 23 primeiros números da P.A em questão, podemos usar uma fórmula ou, então pensar da seguinte maneira:

Por exemplo: qual é o resultado de 1+2+3+4+5 ? Podemos fazer assim:
1+2+3+4+5
5+4+3+2+1
---------------
6+6+6+6+6 = 6 . 5 = 30

Este resultado devemos dividir por 2 e, portanto: 30/2 = 15 = 1+2+3+4+5.

Observe que, o que eu fiz foi pensar o seguinte: se temos que saber quanto vale a soma de 1+2+3+4+5, podemos fazer aquele esqueminha que consiste em saber quanto vale a soma do primeiro termo com o último, do segundo com o penúltimo e assim por diante. Então, obtemos que 1+5=4+2=3+3=4+2=5+1=6. Contudo, obtemos 5 vezes tal valor e, portanto, obtemos o resultado 30, mas temos que dividir por 2, pois, caso contrário, estaríamos contando a soma desses números duas vezes, o que nos daria a resposta errada.

Esta é só uma maneira de pensar que, talvez, pudesse facilitar. Contudo, se não fui muito clara na explicação, aqui vai a fórmula para resolver.

\frac{({a}_{1}+{a}_{n}).n}{2}

Daí, basta substituir:

{a}_{1}=1 e {a}_{n}={a}_{23}
n = 23

Assim, \frac{(1+{a}_{23}).23}{2}.

Contudo, quem é {a}_{23} ?
Basta lembrar que {a}_{23} = {a}_{1}+22r = 1+22.(3)= 1+66=67
Então: \frac{(1+67).23}{2}=\frac{68.23}{2}=\frac{34.2.23}{2}=34.23= 782

Logo, 782 é o resultado da soma dos 23 primeiros termos da P.A. em questão.

Observação: a23 = a1+22r justamente por tratar-se de uma P.A, pois temos que, por exemplo, a2=a1+r; a3=a1+2r; a4=a1+3r e assim por diante.

Ok?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.