• Anúncio Global
    Respostas
    Exibições
    Última mensagem

eliminando b

eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 17:24

Olá.
Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a
[]s
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: eliminando b

Mensagempor LuizAquino » Sáb Mar 19, 2011 18:41

mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: eliminando b

Mensagempor mvww » Sáb Mar 19, 2011 20:03

LuizAquino escreveu:
mvww escreveu:Estou resolvendo um problema de física e travei na álgebra. Já tentei desenvolver os produtos notáveis, mas não consegui eliminar o termo b.
Como posso eliminar o termo b em
(1/(a+b)^2) - (1/(a-b)^2)
quero deixar apenas em função de a


Assim do jeito que está não há como eliminar o termo b. Veja o desenvolvimento abaixo.

\frac{1}{(a+b)^2} - \frac{1}{(a-b)^2} = \left(\frac{1}{a+b}\right)^2 - \left(\frac{1}{a-b}\right)^2

= \left(\frac{1}{a+b} + \frac{1}{a-b}\right)\left(\frac{1}{a+b} - \frac{1}{a-b}\right)

= \left[\frac{(a-b)+(a+b)}{(a+b)(a-b)}\right]\left[\frac{(a-b)-(a+b)}{(a+b)(a-b)}\right]

= \left[\frac{2a}{(a+b)(a-b)}\right]\left[\frac{-2b}{(a+b)(a-b)}\right]

= -\frac{4ab}{[(a+b)(a-b)]^2}

Valeu :)
mvww
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 19, 2011 16:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: