• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Outra de Álgebra

Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 00:20

Seja G um grupo e a,b\,\in G. Sabendo-se que a ordem de a é 2, a ordem de b é 3 e a.b=b.a, determine a ordem de a.b.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Outra de Álgebra

Mensagempor Renato_RJ » Sáb Ago 24, 2013 00:47

Cleyson007 escreveu:Seja G um grupo e a,b\,\in G. Sabendo-se que a ordem de a é 2, a ordem de b é 3 e a.b=b.a, determine a ordem de a.b.


Boa noite !!!

Vejamos, G é um grupo abeliano (pois a \cdot b = b \cdot a), os elementos a e b possuem ordem finita (O(a) = 2 e O(b) = 3) e o MDC (O(a),O(b)) = 1 (MDC(2,3) = 1) então O(ab) = O(a)O(b), logo a ordem de a.b = 6 (isso é uma proposição vinda do Teorema de Cauchy).

Abraços...
Editado pela última vez por Renato_RJ em Sáb Ago 24, 2013 17:56, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 11:13

Renato, estava pensando por aqui e acho que a resposta também poderia ser dada pelo Teorema de Lagrange. O que acha?
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Outra de Álgebra

Mensagempor Renato_RJ » Sáb Ago 24, 2013 14:42

Cleyson007 escreveu:Renato, estava pensando por aqui e acho que a resposta também poderia ser dada pelo Teorema de Lagrange. O que acha?


Pode sim, mas eu acho que é "dar tiro de canhão para matar mosquito"....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 19:28

Realmente rsrsrs :lol:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}