por Carlso Dargo » Seg Mai 14, 2012 20:17
Questão 12
Determine o valor da seguinte equação:
![\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5}*\sqrt[3]{3}}}}} \sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5}*\sqrt[3]{3}}}}}](/latexrender/pictures/f7a1816b5620819327e74f115005b767.png)
a)
![\sqrt[8]{375} \sqrt[8]{375}](/latexrender/pictures/abe338419fe6786a69f9a42d8f447540.png)
b)
![\sqrt[3]{35} \sqrt[3]{35}](/latexrender/pictures/0da97b0b34b25b27206e705c7c0a1a40.png)
c)
![\sqrt[3]{53} \sqrt[3]{53}](/latexrender/pictures/0fd61278ff8260c5aa158d236e577df5.png)
d)
![\sqrt[6]535} \sqrt[6]535}](/latexrender/pictures/ebe3a214458a61643cbdb933fa155791.png)
Gabarito letra
aComo chegar a esse resultado?
-
Carlso Dargo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mai 14, 2012 19:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por DanielFerreira » Sáb Mai 19, 2012 09:55
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Carlso Dargo » Dom Mai 20, 2012 22:32
danjr5 eu esqueci de colocar uma '...' no final ok! Obrigado!
-
Carlso Dargo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mai 14, 2012 19:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por LuizAquino » Seg Mai 21, 2012 00:22
Carlso Dargo escreveu:Questão 12
Determine o valor da seguinte equação:
![\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5}*\sqrt[3]{3}}}}} \sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5*\sqrt[3]{3*\sqrt[3]{5}*\sqrt[3]{3}}}}}](/latexrender/pictures/f7a1816b5620819327e74f115005b767.png)
a)
![\sqrt[8]{375} \sqrt[8]{375}](/latexrender/pictures/abe338419fe6786a69f9a42d8f447540.png)
b)
![\sqrt[3]{35} \sqrt[3]{35}](/latexrender/pictures/0da97b0b34b25b27206e705c7c0a1a40.png)
c)
![\sqrt[3]{53} \sqrt[3]{53}](/latexrender/pictures/0fd61278ff8260c5aa158d236e577df5.png)
d)
![\sqrt[6]535} \sqrt[6]535}](/latexrender/pictures/ebe3a214458a61643cbdb933fa155791.png)
Gabarito letra
aComo chegar a esse resultado?
Carlso Dargo escreveu:eu esqueci de colocar uma '...' no final ok!
Eu suponho que no texto original do exercício ao invés de "seguinte
equação" há na verdade algo como "seguinte
expressão".
Além disso, eu presumo que a expressão original seja:
![\sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\ldots}}}}}} \sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\ldots}}}}}}](/latexrender/pictures/809807bf2c232c3314b7f6d77617e770.png)
Chamando essa expressão de L, temos que:
![L = \sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\ldots}}}}}} L = \sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\sqrt[3]{5\sqrt[3]{3\ldots}}}}}}](/latexrender/pictures/dee483c787602b0f73d3d6b7590cba31.png)
![L = \sqrt[3]{5\sqrt[3]{3L}} L = \sqrt[3]{5\sqrt[3]{3L}}](/latexrender/pictures/4db308f7d6d933c51f85b56cd7688db0.png)
![L^3 = 5\sqrt[3]{3L} L^3 = 5\sqrt[3]{3L}](/latexrender/pictures/f05ea3362737390770f06e2c896d859d.png)


![L = \sqrt[8]{375} L = \sqrt[8]{375}](/latexrender/pictures/332dd14e2109b8ed40559019830bce75.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Carlso Dargo » Seg Mai 21, 2012 09:27
Não Luiz Aquino, no texto é usada a palavra equação e ela está exatamente da forma como postada,faltava apenas a "..." como postei na correção. Trata-se de uma progressão geometrica infinita.
Obrigado!
-
Carlso Dargo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mai 14, 2012 19:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por LuizAquino » Seg Mai 21, 2012 10:40
Carlso Dargo escreveu:Não Luiz Aquino, no texto é usada a palavra equação
Então o texto está mal escrito. Não há
equação alguma no enunciado. Há apenas uma
expressão.
Carlso Dargo escreveu:e ela está exatamente da forma como postada,faltava apenas a "..."
Bem, veja o que você postou:
No final da expressão, note que você colocou
![\sqrt[3]{5}\cdot \sqrt[3]{3} \sqrt[3]{5}\cdot \sqrt[3]{3}](/latexrender/pictures/0a612ccc2954fa9828d1b490b8a5353d.png)
ao invés de
![\sqrt[3]{5\cdot \sqrt[3]{3}} \sqrt[3]{5\cdot \sqrt[3]{3}}](/latexrender/pictures/644c1abde3bfb3ea34f5144ad30dfe52.png)
. Então além das reticências, provavelmente também há essa correção.
Carlso Dargo escreveu:Trata-se de uma progressão geometrica infinita.
Isso não é uma progressão geométrica infinita.
Note que se

é o n-ésimo termo dessa sequência, então temos que:
![a_n = \sqrt[3]{5\sqrt[3]{3a_{n-1}}} a_n = \sqrt[3]{5\sqrt[3]{3a_{n-1}}}](/latexrender/pictures/78d23764d0df1fe1ee4066c0c621200b.png)
![a_n = \sqrt[3]{\sqrt[3]{375a_{n-1}}} a_n = \sqrt[3]{\sqrt[3]{375a_{n-1}}}](/latexrender/pictures/bde801dac7b489ed295ca793b17d1f40.png)
![a_n = \sqrt[9]{375a_{n-1}} a_n = \sqrt[9]{375a_{n-1}}](/latexrender/pictures/0225ce91dc000bafa8d34a70f10ae489.png)
Perceba como isso não define uma progressão geométrica. Para ser uma progressão geométrica, deveríamos ter algo do tipo

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão {equação da reta}
por Danilo » Dom Jun 10, 2012 20:55
- 4 Respostas
- 4171 Exibições
- Última mensagem por Danilo

Seg Jun 11, 2012 23:59
Geometria Analítica
-
- [equação] questão de concurso
por antonybel » Dom Abr 29, 2018 14:32
- 3 Respostas
- 3628 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2018 22:56
Equações
-
- [Equação do plano] duvida em questão
por FernandaBS » Seg Jun 04, 2012 23:43
- 1 Respostas
- 929 Exibições
- Última mensagem por LuizAquino

Ter Jun 05, 2012 11:09
Geometria Analítica
-
- Equação poilinomial do 2 grau, Questão da PUC-MG
por moyses » Dom Jul 29, 2012 23:35
- 5 Respostas
- 3105 Exibições
- Última mensagem por moyses

Ter Jul 31, 2012 16:35
Álgebra Elementar
-
- [Equação irracional] Questão da EPCAR
por -daniel15asv » Sex Ago 03, 2012 17:16
- 3 Respostas
- 3451 Exibições
- Última mensagem por DanielFerreira

Sex Ago 17, 2012 21:40
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.