• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões Aritméticas

Progressões Aritméticas

Mensagempor MarinaM » Dom Abr 15, 2012 00:24

Olá estou com dúvida neste exercício, não lembro muito bem como faço para começar, se alguém me ajudasse ficaria muito grata!
1) Uma progressão geométrica de razão 1/2 tem seu primeiro termo igual a 2. Seja uma progressão aritmética com primeiro termo também igual a 2 e razão igual ao limite da soma dos termos da progressão geométrica. Então, o décimo termo da progressão aritmética é igual a:

Escolher uma resposta.
a. 37
b. 39
c. 36
d. 40
e. 38
MarinaM
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 15, 2012 00:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressões Aritméticas

Mensagempor MarceloFantini » Dom Abr 15, 2012 00:57

Marina, procure criar novos tópicos para suas dúvidas sempre. Leia as regras do fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressões Aritméticas

Mensagempor DanielFerreira » Dom Abr 15, 2012 19:56

MarinaM escreveu:Olá estou com dúvida neste exercício, não lembro muito bem como faço para começar, se alguém me ajudasse ficaria muito grata!
1) Uma progressão geométrica de razão 1/2 tem seu primeiro termo igual a 2. Seja uma progressão aritmética com primeiro termo também igual a 2 e razão igual ao limite da soma dos termos da progressão geométrica. Então, o décimo termo da progressão aritmética é igual a:

Escolher uma resposta.
a. 37
b. 39
c. 36
d. 40
e. 38

P.G:
q = \frac{1}{2}

b_1 = 2

P.A:
a_1 = 2

r = \frac{b_1}{1 - q}

a_{10} = ?

Calculando a razão da P.A:
r = \frac{b_1}{1 - q}

r = \frac{2}{1 - \frac{1}{2}}

r = \frac{2}{\frac{1}{2}}

r = 4

Agora podemos calcular o décimo termo da P.A:
a_{10} = a_1 + (n - 1)r

a_{10} = 2 + (10 - 1)4

a_{10} = 2 + 36

a_{10} = 38
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?