• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões Aritméticas

Progressões Aritméticas

Mensagempor MarinaM » Dom Abr 15, 2012 00:24

Olá estou com dúvida neste exercício, não lembro muito bem como faço para começar, se alguém me ajudasse ficaria muito grata!
1) Uma progressão geométrica de razão 1/2 tem seu primeiro termo igual a 2. Seja uma progressão aritmética com primeiro termo também igual a 2 e razão igual ao limite da soma dos termos da progressão geométrica. Então, o décimo termo da progressão aritmética é igual a:

Escolher uma resposta.
a. 37
b. 39
c. 36
d. 40
e. 38
MarinaM
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 15, 2012 00:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressões Aritméticas

Mensagempor MarceloFantini » Dom Abr 15, 2012 00:57

Marina, procure criar novos tópicos para suas dúvidas sempre. Leia as regras do fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressões Aritméticas

Mensagempor DanielFerreira » Dom Abr 15, 2012 19:56

MarinaM escreveu:Olá estou com dúvida neste exercício, não lembro muito bem como faço para começar, se alguém me ajudasse ficaria muito grata!
1) Uma progressão geométrica de razão 1/2 tem seu primeiro termo igual a 2. Seja uma progressão aritmética com primeiro termo também igual a 2 e razão igual ao limite da soma dos termos da progressão geométrica. Então, o décimo termo da progressão aritmética é igual a:

Escolher uma resposta.
a. 37
b. 39
c. 36
d. 40
e. 38

P.G:
q = \frac{1}{2}

b_1 = 2

P.A:
a_1 = 2

r = \frac{b_1}{1 - q}

a_{10} = ?

Calculando a razão da P.A:
r = \frac{b_1}{1 - q}

r = \frac{2}{1 - \frac{1}{2}}

r = \frac{2}{\frac{1}{2}}

r = 4

Agora podemos calcular o décimo termo da P.A:
a_{10} = a_1 + (n - 1)r

a_{10} = 2 + (10 - 1)4

a_{10} = 2 + 36

a_{10} = 38
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59