por juhfraga » Seg Mar 12, 2012 20:55
Considere o triangulo a seguir:

sabendo-se que a = 120º, AC = AB = 1 cm, entao AD é igual a:
?/?
-
juhfraga
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 12, 2012 20:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por emsbp » Ter Mar 13, 2012 08:40
Bom dia.
Em relação ao triângulo desenhado, tenho uma dúvida: o ângulo em A é de 90º? Pois o desenho não está muito claro. Em A, está desenhado um símbolo que representa um ângulo de 90º graus, fazendo com que o triângulo seja retângulo em A. No entanto a aresta que une A com B deixa dúvidas quanto a ser retângulo.
Podia explicar melhor o desenho, se faz favor, pois toda a resolução depende destes pormenores.
Obrigado.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
por MarceloFantini » Ter Mar 13, 2012 11:33
Acredito que o fato de o desenho não está completamente fiel a descrição não afeta o desenvolvimento da resposta, se as informações realmente estiverem corretas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por juhfraga » Ter Mar 13, 2012 22:19
SIM O TRIANGULO É RETANGULO!
-
juhfraga
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 12, 2012 20:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por emsbp » Qua Mar 14, 2012 12:12
Bom dia.
Bem, sendo o triângulo retângulo,a resolução é fácil.
1º ponto: como os lados AC e AB =1, temos um triângulo isósceles.
Sabemos que a soma dos ângulos internos de um triângulo é sempre igual a 180º. Ora, como temos um triângulo isósceles, o ângulo em C será igual ao ângulo em B. Designando por

, temos que

. Logo

º.
Centremo-nos agora no triângulo ADB. Ora, vamos dividir este triângulo em D, através de uma perpendicular, fazendo com que tenhamos 2 triângulos retângulos: ADE e DEB (onde E é um novo ponto que resulta da perpendicular em D até à aresta AB).
Designemos por

o ângulo em A, relativamente ao triângulo ADB. Ora

=180-45-120=15.
Designemos por y a distância DE e por x a distância EB.Logo, AE= 1-x.
Sendo assim, podemos aplicar razões trigonométricas aos 2 novos triângulos retângulos, formando um sistema:
tg(15)=

e tg(45)=

.
Resolvendo este sistema, vamos ter y

.
Sabendo y, podemos agora achar AD, que não é mais do que a hipótenusa do triângulo de ADE, através do seno: AD

.
(Usei arredondamentos a uma casa decimal).
Espero que ajude.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Plana - Triângulo] Triângulo Isós. e Bissetriz
por raimundoocjr » Qua Fev 22, 2012 09:41
- 3 Respostas
- 6431 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 25, 2012 01:37
Geometria Plana
-
- [Geometria] Triângulo ABC
por Vininhuu » Sex Out 21, 2011 14:28
- 0 Respostas
- 1845 Exibições
- Última mensagem por Vininhuu

Sex Out 21, 2011 14:28
Geometria
-
- [Geometria] Triângulo ABC
por Vininhuu » Sex Out 21, 2011 16:01
- 4 Respostas
- 2711 Exibições
- Última mensagem por dianabarreto

Dom Out 23, 2011 20:57
Geometria Plana
-
- [Geometria] Área do triângulo
por fernandocez » Sáb Out 20, 2012 14:47
- 2 Respostas
- 5446 Exibições
- Última mensagem por fernandocez

Sáb Out 20, 2012 21:13
Geometria Plana
-
- Geometria analitica - vertices do triangulo
por Dayannearaujo » Qui Abr 19, 2012 17:21
- 1 Respostas
- 2224 Exibições
- Última mensagem por LuizAquino

Sex Abr 20, 2012 00:07
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.