• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria.. triangulo

Geometria.. triangulo

Mensagempor juhfraga » Seg Mar 12, 2012 20:55

Considere o triangulo a seguir:

Imagem

sabendo-se que a = 120º, AC = AB = 1 cm, entao AD é igual a:

?/?
juhfraga
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mar 12, 2012 20:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Geometria.. triangulo

Mensagempor emsbp » Ter Mar 13, 2012 08:40

Bom dia.
Em relação ao triângulo desenhado, tenho uma dúvida: o ângulo em A é de 90º? Pois o desenho não está muito claro. Em A, está desenhado um símbolo que representa um ângulo de 90º graus, fazendo com que o triângulo seja retângulo em A. No entanto a aresta que une A com B deixa dúvidas quanto a ser retângulo.
Podia explicar melhor o desenho, se faz favor, pois toda a resolução depende destes pormenores.
Obrigado.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Geometria.. triangulo

Mensagempor MarceloFantini » Ter Mar 13, 2012 11:33

Acredito que o fato de o desenho não está completamente fiel a descrição não afeta o desenvolvimento da resposta, se as informações realmente estiverem corretas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria.. triangulo

Mensagempor juhfraga » Ter Mar 13, 2012 22:19

SIM O TRIANGULO É RETANGULO!
juhfraga
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mar 12, 2012 20:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Geometria.. triangulo

Mensagempor emsbp » Qua Mar 14, 2012 12:12

Bom dia.

Bem, sendo o triângulo retângulo,a resolução é fácil.
1º ponto: como os lados AC e AB =1, temos um triângulo isósceles.
Sabemos que a soma dos ângulos internos de um triângulo é sempre igual a 180º. Ora, como temos um triângulo isósceles, o ângulo em C será igual ao ângulo em B. Designando por \alpha, temos que 180=90+2\alpha. Logo \alpha= 45º.
Centremo-nos agora no triângulo ADB. Ora, vamos dividir este triângulo em D, através de uma perpendicular, fazendo com que tenhamos 2 triângulos retângulos: ADE e DEB (onde E é um novo ponto que resulta da perpendicular em D até à aresta AB).
Designemos por \beta o ângulo em A, relativamente ao triângulo ADB. Ora \beta =180-45-120=15.

Designemos por y a distância DE e por x a distância EB.Logo, AE= 1-x.

Sendo assim, podemos aplicar razões trigonométricas aos 2 novos triângulos retângulos, formando um sistema:

tg(15)=\frac{y}{(1-x)} e tg(45)=\frac{y}{x}.

Resolvendo este sistema, vamos ter y\simeq0.2.

Sabendo y, podemos agora achar AD, que não é mais do que a hipótenusa do triângulo de ADE, através do seno: AD \simeq\frac{0.2}{sen(15)}.

(Usei arredondamentos a uma casa decimal).

Espero que ajude.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.