• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda Questão sem solução

Ajuda Questão sem solução

Mensagempor borgoboy » Ter Jan 24, 2012 22:37

Esta Questão tem solução???
Tentei de tudo que é jeito, mas não consigo calcular pitagoras, me parece que esta faltando dados

Questão Matematica.png
borgoboy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jan 24, 2012 22:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Geometria
Andamento: cursando

Re: Ajuda Questão sem solução

Mensagempor ant_dii » Qua Jan 25, 2012 03:59

Veja figura

figura.png.jpg
Representação do Problema


Colocando um ponto E em CD de modo que KE \perp CD.
Por Pitágoras, teremos que JE=10, então DJ=14 e JC=16.

Como J deve coincidir com B, temos que KJ=KB e BL=JL, mas
BC=BL+LC \Rightarrow 24=BL+LC \Rightarrow BL=24-LC \Rightarrow JL=24-LC

Por Pitágoras, agora no triângulo \Delta JLC, temos
JL^2=LC^2+JC^2 \Rightarrow (24-LC)^2=LC^2+16^2  \Rightarrow \\ \\ \Rightarrow 24^2-48 \cdot LC+LC^2=LC^2+16^2 \Rightarrow 24^2-16^2=48 \cdot LC  \Rightarrow \\ \\ \Rightarrow 320=48LC  \Rightarrow LC=\frac{20}{3}

Assim, \mbox{Area}_{JLC}=\frac{\frac{20}{3}\cdot 16}{2}=\frac{160}{3}.

Outra forma seria fazer por partes, observando que
\mbox{Area}_{ABCD}=\mbox{Area}_{AKED}+\mbox{Area}_{EKJ}+\mbox{Area}_{JKL}+\mbox{Area}_{LKB}+\mbox{Area}_{JLC}
e que
\Delta JKL \equiv \Delta LKB, de onde \mbox{Area}_{JKL}=\mbox{Area}_{LKB}=\frac{\frac{52}{3}\cdot 26}{2}=\frac{676}{3}

Logo, \mbox{Area}_{ABCD}=\mbox{Area}_{AKED}+\mbox{Area}_{EKJ}+2\mbox{Area}_{JKL}+\mbox{Area}_{JLC} \Rightarrow \\ \\ \Rightarrow 720=96+120+2\left(\frac{676}{3}\right)+\mbox{Area}_{JLC}

Espero ter ajudado, mesmo achando uma resposta diferente da que esta marcada. Neste caso verifique se o que fiz te faz sentido ou se deixei algum detalhe de lado... Confesso que estou cansado e não to vendo erro em vista disso...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Ajuda Questão sem solução

Mensagempor borgoboy » Qui Jan 26, 2012 10:06

Muito obrigado pela resposta...
Realmente sua resposta está correta. Errei está questão em um concurso recente. Agora vou prestar mais atenção aos detalhes .
borgoboy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jan 24, 2012 22:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Geometria
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}