por Adriana14 » Qua Ago 17, 2011 09:50
Olá vocês poderiam ajudar'me a resolver os seguintes exercícios?
Resolve, em R, as equações trigonométricas:
a) tan x = 1
b)2 sin x - 1 = 0
-
Adriana14
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Ago 17, 2011 09:45
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Téncino de Higiene e Segurança no Trabal
- Andamento: cursando
por Neperiano » Sex Ago 19, 2011 19:57
Ola
Não sei qual sua duvida
Mas é so usar a calculadora, procure lé qual o valor de tangente que dá 1, é 45.
Tente fazer a outra
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por gvm » Qui Ago 25, 2011 00:31
Na verdade, como o problema pede as soluções em R, é um caso de Solução Geral.
A solução geral parte do seguinte princípio: você deve escrever uma expressão que te dê a solução, independente da mesma estar na primeira, segunda, terceira ou enésima volta do ciclo trigonométrico, uma vez que a questão não especifica o intervalo no qual devem estar contidas as soluções.
Não sei se fui suficientemente claro, vou fazer o A pra tentar mostrar o método.
A equação é tg x = 1.
No ciclo trigonométrico existem dois pontos cuja tangente é igual a 1, na primeira volta, esses pontos correspondem a

/4 (45º) (I) e 5

/4 (225º) (II).
O objetivo do exercício, como eu já disse é escrever uma expressão que te dê esses dois pontos para qualquer volta.
A expressão referente ao ponto (I) é:
x =

/4 + k . 2

, com k E Z
Vou tentar explicar. O que eu acabei de fazer foi: partir do valor correspondente àquele ponto na primeira volta e somar de 2

em 2

, "andando uma volta no ciclo de cada vez" (uma volta equivale a 2

), por isso k
deve ser um número inteiro.
Já a expressão referente ao ponto (II) pode ser escrita assim:
x = 5

/4 + k . 2

, com k E Z
Acredito que colocar a solução dessa maneira (dividida em duas partes) não estaria errado, contudo, nesse caso específico é possível escrever tudo em uma única expressão. Pelo fato dos dois pontos em questão serem diametralmente opostos, ou seja, a "distância" entre eles é

, podemos escrever da seguinte maneira:
x =

/4 + k .

, com k E Z
Fazendo assim, eu parto daquele primeiro ponto (

/4) e "ando meia volta de cada vez"
Portanto a solução do item A seria:
S = {x E R/ x =

/4 + k .

, com k E Z}
Não sei se fui claro, eu parti do princípio de que você tem conhecimentos sobre
ciclo trigonométrico.
Espero ter ajudado.
-
gvm
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Ago 25, 2011 00:02
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando Engenharia
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação trigonométrica] Resolução da equação
por JessicaAraujo » Qui Abr 11, 2013 15:59
- 2 Respostas
- 1737 Exibições
- Última mensagem por JessicaAraujo

Qui Abr 11, 2013 19:12
Funções
-
- Equação Trigonométrica.
por rodsales » Sáb Ago 29, 2009 18:41
- 4 Respostas
- 4055 Exibições
- Última mensagem por rodsales

Sáb Ago 29, 2009 21:19
Trigonometria
-
- equação trigonométrica
por thaa_121 » Qui Abr 08, 2010 15:22
- 1 Respostas
- 3796 Exibições
- Última mensagem por Molina

Qui Abr 08, 2010 23:58
Trigonometria
-
- [Equação Trigonométrica]Equação trigonométrica
por gustavoluiss » Ter Ago 09, 2011 00:32
- 12 Respostas
- 8248 Exibições
- Última mensagem por gustavoluiss

Qua Ago 10, 2011 18:20
Trigonometria
-
- Equação Trigonometrica
por joaofonseca » Seg Nov 28, 2011 00:38
- 5 Respostas
- 2945 Exibições
- Última mensagem por TheoFerraz

Ter Nov 29, 2011 15:53
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.