por Anderson Carvalho » Qua Jul 27, 2011 19:23
Olá pessoal, estava tentando resolver essa questao de geometria , mas nao to conseguindo.Queria alguma ajuda, grato!!!
O enunciado é o seguinte: Na figura abaixo considere o circulo que contem os pontos B(4,2) , C(0,10) e D(0,2), a reta r é tangente ao circulo em B e s é uma reta que passa por B e C. Qual a área da regiao interna ao circulo limitada entre o eixo y e a reta s?
A resposta é 8+20arcsen(raiz quadrada de 5 sobre 5)
Chamei o centro de E
Tentei da seguinte maneira : com as informaçoes da questao conclui que a reta s(que passa por C e B) contem o centro E da circuferencia que é (2,6). O raio calculei e obtive 2raiz de 5 sobre 5. Resumindo a area pedida é a area do triangulo BCD + area do segmento circular BD. Pra calcular essa area do segmento circular nao to conseguindo, tentei achar a area do setor circular BD - area do triangulo BDE. As areas dos triangulos sao faceis ja achei , sao: triangulo BCD=16 e area do triangulo BDE=8. Tive a ideia tb de calcular a area do segmento integrando de 2 a 4 entre a reta y=2 e a equaçao da circunferencia mas nao to conseguindo, se alguem enxergar algum caminho gostaria de saber
Valeu, conto com vcs

- imagem de circunferencia
Editado pela última vez por
Anderson Carvalho em Qua Jul 27, 2011 21:00, em um total de 1 vez.
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
por Molina » Qua Jul 27, 2011 20:08
Boa tarde.
Onde está a figura?
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Anderson Carvalho » Qua Jul 27, 2011 20:12
Nao to conseguindo colocar como anexo, como q eu faço?
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
por Molina » Qua Jul 27, 2011 20:26
Anderson Carvalho escreveu:Nao to conseguindo colocar como anexo, como q eu faço?
Você pode usar o
ImageShack para armazenar sua imagem e repassar o endereço da imagem.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Anderson Carvalho » Qua Jul 27, 2011 21:01
ta ai a figura
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral - Cálculo de áreas
por pinkfluor » Qui Jul 21, 2011 11:38
- 3 Respostas
- 2758 Exibições
- Última mensagem por pinkfluor

Qui Jul 21, 2011 17:21
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por AlbertoAM » Ter Jun 28, 2011 00:25
- 5 Respostas
- 6398 Exibições
- Última mensagem por AlbertoAM

Qua Jun 29, 2011 20:44
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de áreas por integrais
por Faby » Seg Set 19, 2011 10:50
- 9 Respostas
- 6052 Exibições
- Última mensagem por Faby

Qui Set 22, 2011 00:41
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Áreas utilizando integrais
por Rambox » Ter Jun 14, 2011 14:38
- 2 Respostas
- 2091 Exibições
- Última mensagem por Rambox

Ter Jun 14, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Cálculo de Áreas - Guidorizzi
por Lennon » Sáb Jun 08, 2013 02:24
- 2 Respostas
- 2706 Exibições
- Última mensagem por Lennon

Dom Jun 09, 2013 22:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.