por Anderson Carvalho » Qua Jul 27, 2011 19:23
Olá pessoal, estava tentando resolver essa questao de geometria , mas nao to conseguindo.Queria alguma ajuda, grato!!!
O enunciado é o seguinte: Na figura abaixo considere o circulo que contem os pontos B(4,2) , C(0,10) e D(0,2), a reta r é tangente ao circulo em B e s é uma reta que passa por B e C. Qual a área da regiao interna ao circulo limitada entre o eixo y e a reta s?
A resposta é 8+20arcsen(raiz quadrada de 5 sobre 5)
Chamei o centro de E
Tentei da seguinte maneira : com as informaçoes da questao conclui que a reta s(que passa por C e B) contem o centro E da circuferencia que é (2,6). O raio calculei e obtive 2raiz de 5 sobre 5. Resumindo a area pedida é a area do triangulo BCD + area do segmento circular BD. Pra calcular essa area do segmento circular nao to conseguindo, tentei achar a area do setor circular BD - area do triangulo BDE. As areas dos triangulos sao faceis ja achei , sao: triangulo BCD=16 e area do triangulo BDE=8. Tive a ideia tb de calcular a area do segmento integrando de 2 a 4 entre a reta y=2 e a equaçao da circunferencia mas nao to conseguindo, se alguem enxergar algum caminho gostaria de saber
Valeu, conto com vcs

- imagem de circunferencia
Editado pela última vez por
Anderson Carvalho em Qua Jul 27, 2011 21:00, em um total de 1 vez.
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
por Molina » Qua Jul 27, 2011 20:08
Boa tarde.
Onde está a figura?
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Anderson Carvalho » Qua Jul 27, 2011 20:12
Nao to conseguindo colocar como anexo, como q eu faço?
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
por Molina » Qua Jul 27, 2011 20:26
Anderson Carvalho escreveu:Nao to conseguindo colocar como anexo, como q eu faço?
Você pode usar o
ImageShack para armazenar sua imagem e repassar o endereço da imagem.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Anderson Carvalho » Qua Jul 27, 2011 21:01
ta ai a figura
-
Anderson Carvalho
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Jul 26, 2011 23:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral - Cálculo de áreas
por pinkfluor » Qui Jul 21, 2011 11:38
- 3 Respostas
- 2758 Exibições
- Última mensagem por pinkfluor

Qui Jul 21, 2011 17:21
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por AlbertoAM » Ter Jun 28, 2011 00:25
- 5 Respostas
- 6398 Exibições
- Última mensagem por AlbertoAM

Qua Jun 29, 2011 20:44
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de áreas por integrais
por Faby » Seg Set 19, 2011 10:50
- 9 Respostas
- 6052 Exibições
- Última mensagem por Faby

Qui Set 22, 2011 00:41
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Áreas utilizando integrais
por Rambox » Ter Jun 14, 2011 14:38
- 2 Respostas
- 2091 Exibições
- Última mensagem por Rambox

Ter Jun 14, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Cálculo de Áreas - Guidorizzi
por Lennon » Sáb Jun 08, 2013 02:24
- 2 Respostas
- 2706 Exibições
- Última mensagem por Lennon

Dom Jun 09, 2013 22:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.