• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porcentagem

Porcentagem

Mensagempor claudiosantos35 » Ter Mai 24, 2011 16:12

Segundo informações da Sabesp, até 2 anos de idade, 80% do nosso corpo é formado de água; aos 5 anos, essa porcentagem cai para 70% até que, depois dos 60 anos, temos apenas 58% de água no organismo.

Nessas condições, uma pessoa com mais de 60 anos tem, em relação à quantidade de água no organismo que possuía aos 2 anos de idades, uma redução de x% de água. O valor de x é:

Alternativa A = 23,5
Alternativa B = 24,0
Alternativa C = 25,5
Alternativa D = 26,0
Alternativa E = 27,5

Nota: Eu sei que a resposta para essa pergunta é a alternativa E, mas eu necessito saber como chegar a esse resultado.
claudiosantos35
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mai 20, 2010 16:22
Formação Escolar: GRADUAÇÃO
Área/Curso: biologia
Andamento: formado

Re: Porcentagem

Mensagempor arpavan » Qua Mai 25, 2011 17:43

Olá Claudio

uma fórmula simples para calcular taxas de crescimentos entre valores:
Taxa = \left(\frac{ValorNovo}{ValorVelho}-1    \right)*100

No teu problema, os valores são tratados como se a porcentagem fosse uma simples unidade:

Taxa = \left(\frac{58}{80}-1    \right)*100=-27,5

o o sinal negativo indica um decrescimento entre os dados.

então, a resposta é:
uma pessoa tem uma redução de 27,5% de água aos 60 anos, em relação ao que possuía aos 2 anos.


Até mais.

Professor Alcione Rafael
Professor Alcione Rafael Pavan
Graduado, Licenciatura em Matemática e Mestre em Modelagem Matemática
Disciplinas que trabalho: Matemática Aplicada, Matemática Financeira, Cálculo I, Cálculo Numérico, Estatística I, Estatística II , Pesquisa Operacional, Informática Básica
Cursos que Ministro: Matemática Financeira com HP12C, Excel Básico e Excel Avançado
http://www.arpavan.com
arpavan
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 25, 2011 17:32
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestre em Modelagem Matemática
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D