• Anúncio Global
    Respostas
    Exibições
    Última mensagem

álgebra linear duvida

álgebra linear duvida

Mensagempor mastercgmr » Ter Out 05, 2010 11:57

boas malta

é o seguinte, de agora em diante vou ter estas fichas de avaliação de álgebra linear que serão feitas em casa.
apesar de já a ter resolvido achei que era burrice submete-la sem verificar na net se estavam correctas até porque tenho algumas duvidas.

Pergunta1- 2ª 3ª 4ª Opções (esta nao tenho a certeza)
Pergunta2- 1ª Opção
Pergunta3- 2ª Opção
Pergunta4- 3ª Opção
Pergunta5- 2ª 3ª Opções
Pergunta6- 4ª Opção
Pergunta7- não faço a mínima ideia

ficava agradecido pela ajuda

Imagem
mastercgmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Out 05, 2010 11:18
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: álgebra linear duvida

Mensagempor mastercgmr » Ter Out 05, 2010 12:25

na pergunta 7 texto em falta:
"onde 1 seja a primeira entrada não nula de cada linha. "

Informação adicional na pergunta 7 : "i" unidade imaginária, e uma das soluções da equação x^2+1=0 (isto ainda me deixou mais confuso)
mastercgmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Out 05, 2010 11:18
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: álgebra linear duvida

Mensagempor MarceloFantini » Ter Out 05, 2010 17:00

Master, o objetivo do fórum não é resolver listas de exercício, portanto da próxima vez pergunte somente sobre as questões que tem dúvida, colocando também suas tentativas.

Uma equação linear é toda equação da forma Ax +By + Cz + Dw + ... = 0, onde as letras maiores são constantes. Note que não há termos mistos (coisas como xyz, yz, xy). Logo, na primeira pergunta sobra a 2ª opção.

Segunda pergunta certa.

Terceira pergunta certa.

Quarta pergunta errada. A resposta certa é a segunda opção. Veja: az = b. Se a \neq 0 e b \neq 0, então z = \frac{b}{a}{/tex]. Se [tex]a=0 e b \neq 0, 0z = b não existe. Se a = 0 e b = 0, tem infinitas soluções: 0z = 0.

Quinta pergunta certa.

Sexta pergunta não tenho tempo pra escalonar.

Sobre a sétima, é praticamente a mesma coisa, mas noto que você não tem familiaridade com os números complexos. Essencialmente, a unidade imaginária é definida como: i = \sqrt {-1}. Um número complexo é da forma z = a +bi, com a, b \in \Re.Dê uma estudada nesse assunto e tente novamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: álgebra linear duvida

Mensagempor mastercgmr » Ter Out 05, 2010 19:20

Fico imensamente agradecido pela excelente ajuda que me foi prestada.
No entanto fico com duvidas de como proceder futuramente face a outras fichas do género.
Por exemplo a pergunta 4 por distracção conclui que era a resposta errada... se não a tivesse colocado aqui no fórum teria submetido o erro.
Não é conveniente colocar a ficha por inteiro?

Mais uma vez muito obrigado!
mastercgmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Out 05, 2010 11:18
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: álgebra linear duvida

Mensagempor DanielRJ » Ter Out 05, 2010 19:26

O objetivo do forum é sanar duvidas. poste uma de cada vez e expresse sua duvida.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: álgebra linear duvida

Mensagempor mastercgmr » Ter Out 05, 2010 19:28

Ok! então assim farei, graças á boa vontade! ;)
mastercgmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Out 05, 2010 11:18
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: álgebra linear duvida

Mensagempor mastercgmr » Qui Out 14, 2010 18:55

Boas malta!

Finalmente chegou a ficha 2/8, e já está a dar volta ao miolo....

Mas antes gostava de dizer que tive 20 valores na 1ª ficha e por isso tenho de vos agradecer!

Agora sobre a ficha nova:

:arrow: Na primeira pergunta não tive lá grande dificuldade, deu-me a 3ª opção.

:arrow: Na segunda pergunta não entendo o conceito de "dimensão de V" já traduzi o sistema para matriz e resolvi mas dai não sei mesmo o que fazer mais...

:arrow: Na terceira creio que a resposta é a segunda opção também não tenho muitas duvidas...

:arrow: Na quarta e na quinta não sei mesmo por onde pegar... não vou estar a tentar adivinhar...

:arrow: Na sexta, sei resolver um exercício de transformação linear mas não entendo o contexto do exercício

Imagem
mastercgmr
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Out 05, 2010 11:18
Formação Escolar: SUPLETIVO
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.