por Felipe » Qua Mar 25, 2020 22:07
Alguém consegue explica o cálculo pra encontrar a relação recorrência da seguinte equação diferencial em série de potência? 4y''+y'=0
Obrigado
-
Felipe
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mar 25, 2020 20:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Logística
- Andamento: cursando
por adauto martins » Qui Abr 02, 2020 16:30
temos uma EDO homogenea(=0) de segunda ordem...
primeiro devemos achar y...entao
faz-se y'=p,e ambos dependo de um parametro t...
teremos

como p é uma exponencial,logo p é positivo,teremos entao

logo,teremos

como o problema nao traz condiçoes inicias de contorno,e o ponto onde expandir a serie...
vamos tomar p=0 , k=1 e c=0...

a expansao em serie de taylor y:


-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Felipe » Qui Abr 02, 2020 20:35
Obrigado... me esclareceu o calculo
-
Felipe
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mar 25, 2020 20:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Logística
- Andamento: cursando
por adauto martins » Dom Abr 05, 2020 11:14
forma correta de y:

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relaçao de Recorrencia
por henrique25 » Sáb Mai 08, 2010 17:07
- 1 Respostas
- 2635 Exibições
- Última mensagem por Douglasm

Sáb Mai 08, 2010 18:49
Álgebra Elementar
-
- relação de recorrência - funções de Bessel
por MacGyver » Dom Nov 08, 2009 14:55
- 0 Respostas
- 1933 Exibições
- Última mensagem por MacGyver

Dom Nov 08, 2009 14:55
Cálculo: Limites, Derivadas e Integrais
-
- Relação de Recorrência - Método de substituição
por cesarxyz » Qui Abr 26, 2012 16:07
- 0 Respostas
- 1719 Exibições
- Última mensagem por cesarxyz

Qui Abr 26, 2012 16:07
Álgebra Elementar
-
- Relação de Recorrência - Máquina de vender selos
por cesarxyz » Qui Abr 26, 2012 16:02
- 0 Respostas
- 1616 Exibições
- Última mensagem por cesarxyz

Qui Abr 26, 2012 16:02
Álgebra Elementar
-
- [Série de potÊncia] Expansão de séries de potência
por Adonias 7 » Qua Jun 01, 2016 09:05
- 0 Respostas
- 3542 Exibições
- Última mensagem por Adonias 7

Qua Jun 01, 2016 09:05
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.