• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fcomposta]Determine f(x) a partir d função composta g(f(x))

[Fcomposta]Determine f(x) a partir d função composta g(f(x))

Mensagempor ale03 » Sex Mar 21, 2014 14:37

Dada a função g(x) = \frac{2x+3}{3x+4}, qual o valor de f(2), sabendo que a função f satisfaz g(f(x))= 4x, para todo x de seu domínio?

a)- \frac{21}{16}

b)- \frac{29}{22}

c)- \frac{37}{28}

d)- \frac{5}{4}

e)- \frac{13}{10}
f) n.d.r.


\frac{2x+3}{3x+4}=4x
2f(x)+3=4x(3f(x)+4)
2f(x)+3=12xf(x)+16x

Até aqui está correto? Como desenvolvo essa equação?
ale03
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 21, 2014 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: [Fcomposta]Determine f(x) a partir d função composta g(f

Mensagempor Russman » Sex Mar 21, 2014 15:19

Esta correto, sim! Basta continuar.

2f(x) + 3 = 12xf(x) + 16x
2f(x) - 12xf(x) = 16x - 3
f(x)2(1-6x) = 16x-3
f(x) = \frac{8x-3/2}{1-6x}

Daí,

f(2) = \frac{8.2-3/2}{1-6.2} = \frac{16-3/2}{1-12} = - \frac{29}{22}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fcomposta]Determine f(x) a partir d função composta g(f

Mensagempor ale03 » Sáb Mar 22, 2014 01:14

Russman escreveu:Esta correto, sim! Basta continuar.

2f(x) + 3 = 12xf(x) + 16x
2f(x) - 12xf(x) = 16x - 3
f(x)2(1-6x) = 16x-3
f(x) = \frac{8x-3/2}{1-6x}

Daí,

f(2) = \frac{8.2-3/2}{1-6.2} = \frac{16-3/2}{1-12} = - \frac{29}{22}.


Obrigada Russman. A ocorrência não usual de axf(x) me deixou confusa e, assim, não tive a ideia de colocar, no lado esquerdo, f(x) em evidência.
ale03
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 21, 2014 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: [Fcomposta]Determine f(x) a partir d função composta g(f

Mensagempor Russman » Sáb Mar 22, 2014 01:23

Bons estudos. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}