• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUNÇÃO INVERSA

FUNÇÃO INVERSA

Mensagempor BRUNA AVILA » Ter Ago 13, 2013 15:36

Boa tarde!!

não consigo resolver o exercício de função inversa

Ache a função inversa 2x-1/3,minha dificuldade e porque não consigo resolver a fração,alguém pode me ajudar.[/color]
BRUNA AVILA
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Ago 13, 2013 14:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em quimica
Andamento: cursando

Re: FUNÇÃO INVERSA

Mensagempor Russman » Ter Ago 13, 2013 17:18

Para obter a função inversa basta trocar x por y e vice-versa. Veja:

y = \frac{2x-1}{3} \rightarrow  x = \frac{2y-1}{3}

Desenvolvendo, temos

x = \frac{2y-1}{3}
3x = 2y-1
3x+1 = 2y
y = \frac{3x+1}{2}

Então a função inversa é y^{(-1)} = \frac{3x+1}{2}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: FUNÇÃO INVERSA

Mensagempor BRUNA AVILA » Ter Ago 13, 2013 17:52

:-D obrigada.
BRUNA AVILA
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Ago 13, 2013 14:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em quimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.