• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números reais] Demonstração

[Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 19:39

Mostre, utilizando propriedades básicas, que:

[/tex]

Eu tenho a resposta deste exercício, mas gostaria que me ajudassem a melhor compreendê-la:

Resposta: Por hipótese ax = a e como [tex]a\neq0\, existe\, {a}^{-1}
Logo[tex]\, {a}^{-1}(ax) = x\, por um lado[/tex]
e por outro
\,{a}^{-1}(ax)={a}^{-1}(a)\, = 1\, por outro.
\,Logo\, x=1

\,Não saberia reproduzir a resolução se me deparasse com este exercício
no futuro... Eu sei que é usada a propriedade de dado um número
\,a\neq0\,,este número possui inverso[tex] \,{a}^{-1} \,tal\, que \,a . {a}^{-1} = 1\,[/tex]

Mas este começo[tex]\, {a}^{-1} (ax)= x\,[/tex] me parece confuso...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:02

Não conseguir visualizar a resposta .

Propriedade : Existência de inverso

Para todo real b \neq 0 ,existe um único real c tal que b\cdot c = 1 .Tal c denomina-se oposto de b , c= b^{-1} .

Portanto ,

a\cdot x = a  , a\neq 0 \iff  (a\cdot x )\cdot a^{-1} = a \cdot a^{-1} \iff  x (a \cdot a^{-1} ) = 1 \iff x \cdot 1 = 1 ou seja x = 1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:18

Você não compreendeu a^{-1} \cdot (ax) = x ?

Veja que : x = 1 \cdot x (Existência de elemento neutro )

Mas , 1 = a\cdot a^{-1}  , a \neq 0 (Existência de inverso )

Disso concluímos que x = (a\cdot a^{-1} ) x    = a^{-1} (a\cdot x) = x (Associativa )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 21:14

Não entendi ainda como isso me ajuda a provar que Se ax = a, x = 1...

Não entendi ainda menos aquela por outro lado...

Na minha cabeça vejo assim:

Assumindo x=1, pela propriedade do inverso

a . a^-1 = 1, então x = a . a^-1

Logo ax = a é o mesmo que:
a (a.a^-1) = a


Não entendo como a conclusão com a associativa vai ajudar a resolver o exercício..., mas também não acho que o que eu esteja pensando
vá me ajudar a resolvê-lo...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Seg Fev 04, 2013 20:50

Boa noite . Não pode assumir que x = 1 ,pois é extamente isto que deve demonstrar .

Antes de mostrarmos ,vamos ver alguns exemplos .

Qual o valor que x deve assumir ?

2x = 2 ???

5x = 5 ???

a'x = a'  \neq 0 ???

Parece razoável dizer que x é igual a 1 em todos os casos acima ,não é verdade ? Mas, como mostrar ?

Vamos tentar desenvolver 2x = 2 .

Temos :

x = x \cdot 1  = x\cdot \left(\frac{2}{2} \right) =  (x\cdot 2 )\frac{1}{2}  = 2x \cdot 2^{-1} .

Ora ,mas 2x = 2 então 2x \cdot 2^{-1} =  2 \cdot 2^{-1} = 2 \cdot \frac{1}{2} = 1 .

OBS.:Usamos todas as propriedades citadas no tópico acima .


Agora tente demonstrar que ax = a  , a \neq 0 \iff x = 1 .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.