• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Criterio da Razão,Ajuda com erro simples

Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Seg Out 25, 2010 14:54

bom pessoal, meu problema nem é tanto quanto ao criterio da razão propriamente dito, e sim com a matematica basica envolvida no meio...empaquei logo no começo, vou mostrar aqui as unicas coisas que consegui fazer...

O exercicio pede para dizer se converge(L<1) ou diverge(L>1).

\sum_{n=1}^{\propto} frac{{4}^{n}}{{n}^{2}}

entãm tentei deixar como pede a formula:

\lim_{n\rightarrow\propto} \left| \frac{an+1}{an} \right| = L

ficando:
\frac{\frac{{4}^{n+1}}{{(n+1)}^{2}}}{\frac{{4}^{n}}{{n}^{2}}}

entam fiz dividendo X inverso do divisor:

\frac{{4}^{n+1}}{{(n+1)}^{2}}  \frac{{n}^{2}}{{4}^{n}}

e é ai que o bixo pego pro meu lado, as unicas informações que sei é que {4}^{n+1} =  {4}^{n} . {4}^{1}
o que não me ajudou em nada, eu até pensei em fazer a parter de produtos notaveis do primeiro grupo, mas só piorou.
fica aqui onde chegeui com produtos notaveis:

\frac{{4}^{n+1}}{{n}^{2}+2n+1}  \frac{ {n}^{2}  }{   {4}^{n} }

eu fiz besteira pro meio do caminho ou não? se não, como continuo,pois se aplicar o limite agora não vai funcionar.
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor andrefahl » Sex Out 29, 2010 12:59

Cara, eu acho que vc chegou bem perto

repare só:

\frac{4^n^+^1}{(n^2 +2n +1)}\frac{n^2}{4^n} = \frac{ 4^n 4^1}{(n^2 +2n +1)}\frac{n^2}{4^n}

Agira o 4^n cancela com o 4^n ficando o seguinte

\frac{4 n^2}{(n^2 +2n +1)}

para calcular o limite divide tudo pela maior potencia

\Rightarrow  \frac{ \frac {4n^2}{n^2}}{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{1}{n^2}} = \frac{4}{1 + \frac{2}{n} + \frac{1}{n^2}}

agora eh só calcular o limite que resulta em 4 =)

dai o limite é maior que 1
andrefahl
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Qui Out 28, 2010 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Física - UNICAMP
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Sex Out 29, 2010 13:23

muito obrigado!
é por isso que o meu professor vive falando que agente não erra analise matematica, agente erra 7ª serie :oops:
eu simplesmente ignorei o fato de que se podia cortar os {4}^{n}.
Burro burro burro, da 0 pra ele :lol:
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D