• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:53

considerando log_m{10}=1,4e log_m{50}=2,4,pode-se afirmar que,com base nesses dados,que o valor do logaritmo decimal de 5 é:
a-)3/7
b-)1/2
c-)5/7
d-)7/3
e-)7/5
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:40

Veja que \log_m 50  \log_m (10 \cdot 5) = \log_m 10 + \log_m 5 = 2,4 \rightarrow 1 + \log_m 5 = 2,4 \rightarrow \log_m 5 = 1,4 = \frac{14}{10} = \frac{7}{5}

Alternativa E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 10:48

olá fantini
o gabarito aqui esta falando que é a alternativa C
já encontrei erros no gabarito,mais pode ver certinho se vc não esqueceu de nada:?

ABRAÇOS AMIGO
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Qui Out 14, 2010 16:38

Aparentemente a minha resolução ficou incompleta (e errada, errei uma conta, que consertarei agora):

\log_m 50 = \log_m (5 . 10) = \log_m 5 + \log_m 10 = \log_m 5 + 1,4 = 2,4 \rightarrow \log_m 5 = 1

Assim, m^1 = 5 \rightarrow m = 5

O que nós QUEREMOS: o logaritmo decimal de 5, que eu vou chamar de x (\log_{10} 5 = x) .

O que nós TEMOS: \log_5 10 = 1,4 .

Da segunda afirmação:

5^{1,4} = 10

Tomando o logaritmo decimal dos dois lados:

\log_{10} 5^{1,4} = \log_{10} 10 \rightarrow 1,4 . \log_{10} 5 = 1 \rightarrow \log_{10} 5 = \frac{1}{1,4} = \frac{10}{14} = \frac{5}{7}

Agora está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: